Analyzing Information Transfer in Time-Varying Multivariate Data

被引:0
|
作者
Wang, Chaoli [1 ]
Yu, Hongfeng [2 ]
Grout, Ray W. [3 ]
Ma, Kwan-Liu [4 ]
Chen, Jacqueline H. [2 ]
机构
[1] Michigan Tech, Houghton, MI 49931 USA
[2] Sandia Natl Labs, Livermore, CA 94551 USA
[3] NREL, Golden, CO 80401 USA
[4] Univ Calif Davis, Davis, CA 95616 USA
来源
IEEE PACIFIC VISUALIZATION SYMPOSIUM 2011 | 2011年
基金
美国国家科学基金会;
关键词
VISUAL ANALYSIS; VISUALIZATION; FLOW;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Effective analysis and visualization of time-varying multivariate data is crucial for understanding complex and dynamic variable interaction and temporal evolution. Advances made in this area are mainly on query-driven visualization and correlation exploration. Solutions and techniques that investigate the important aspect of causal relationships among variables have not been sought. In this paper, we present a new approach to analyzing and visualizing time-varying multivariate volumetric and particle data sets through the study of information flow using the information-theoretic concept of transfer entropy. We employ time plot and circular graph to show information transfer for an overview of relations among all pairs of variables. To intuitively illustrate the influence relation between a pair of variables in the visualization, we modulate the color saturation and opacity for volumetric data sets and present three different visual representations, namely, ellipse, smoke, and metaball, for particle data sets. We demonstrate this information-theoretic approach and present our findings with three time-varying multivariate data sets produced from scientific simulations.
引用
收藏
页码:99 / 106
页数:8
相关论文
共 50 条
  • [1] Correlation Study of Time-Varying Multivariate Climate Data Sets
    Sukharev, Jeffrey
    Wang, Chaoli
    Ma, Kwan-Liu
    Wittenberg, Andrew T.
    IEEE PACIFIC VISUALIZATION SYMPOSIUM 2009, PROCEEDINGS, 2009, : 161 - +
  • [2] Visual analytics of time-varying multivariate ionospheric scintillation data
    Soriano-Vargas, Aurea
    Vani, Bruno C.
    Shimabukuro, Milton H.
    Monico, Joao F. G.
    Oliveira, Maria Cristina F.
    Hamann, Bernd
    COMPUTERS & GRAPHICS-UK, 2017, 68 : 96 - 107
  • [3] Exploring Time-Varying Multivariate Volume Data Using Matrix of Isosurface Similarity Maps
    Tao, Jun
    Imre, Martin
    Wang, Chaoli
    Chawla, Nitesh V.
    Guo, Hanqi
    Sever, Gokhan
    Kim, Seung Hyun
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2019, 25 (01) : 1236 - 1245
  • [4] Visualization of Large Time-Varying Vector Data
    Ali, Ahmed S.
    Hussien, Ashraf S.
    Tolba, Mohamed F.
    Youssef, Ahmed H.
    ICCSIT 2010 - 3RD IEEE INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND INFORMATION TECHNOLOGY, VOL 4, 2010, : 210 - 215
  • [5] TransGraph: Hierarchical Exploration of Transition Relationships in Time-Varying Volumetric Data
    Gu, Yi
    Wang, Chaoli
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2011, 17 (12) : 2015 - 2024
  • [6] Reconstructing complex network for characterizing the time-varying causality evolution behavior of multivariate time series
    Jiang, Meihui
    Gao, Xiangyun
    An, Haizhong
    Li, Huajiao
    Sun, Bowen
    SCIENTIFIC REPORTS, 2017, 7
  • [7] iTree: Exploring Time-Varying Data using Indexable Tree
    Gu, Yi
    Wang, Chaoli
    2013 IEEE SYMPOSIUM ON PACIFIC VISUALIZATION (PACIFICVIS), 2013, : 137 - 144
  • [8] Visual Trends Analysis in Time-Varying Ensembles
    Obermaier, Harald
    Bensema, Kevin
    Joy, Kenneth I.
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2016, 22 (10) : 2331 - 2342
  • [9] STSR-INR: Spatiotemporal super-resolution for multivariate time-varying volumetric data via implicit neural representation
    Tang, Kaiyuan
    Wang, Chaoli
    COMPUTERS & GRAPHICS-UK, 2024, 119
  • [10] Time-varying Extremum Graphs
    Das, Somenath
    Sridharamurthy, Raghavendra
    Natarajan, Vijay
    COMPUTER GRAPHICS FORUM, 2024, 43 (06)