Universal Computation by Multiparticle Quantum Walk

被引:354
作者
Childs, Andrew M. [1 ,2 ]
Gosset, David [1 ,2 ]
Webb, Zak [2 ,3 ]
机构
[1] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
[2] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[3] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1126/science.1229957
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A quantum walk is a time-homogeneous quantum-mechanical process on a graph defined by analogy to classical random walk. The quantum walker is a particle that moves from a given vertex to adjacent vertices in quantum superposition. We consider a generalization to interacting systems with more than one walker, such as the Bose-Hubbard model and systems of fermions or distinguishable particles with nearest-neighbor interactions, and show that multiparticle quantum walk is capable of universal quantum computation. Our construction could, in principle, be used as an architecture for building a scalable quantum computer with no need for time-dependent control.
引用
收藏
页码:791 / 794
页数:4
相关论文
共 33 条
  • [1] Aaronson S, 2011, ACM S THEORY COMPUT, P333
  • [2] Aharonov D., 2001, P 33 ANN ACM S THEOR, DOI [10.1145/380752.380758, DOI 10.1145/380752.380758]
  • [3] Molecular binding in interacting quantum walks
    Ahlbrecht, Andre
    Alberti, Andrea
    Meschede, Dieter
    Scholz, Volkher B.
    Werner, Albert H.
    Werner, Reinhard F.
    [J]. NEW JOURNAL OF PHYSICS, 2012, 14
  • [4] Ambainis A., 2001, P 33 ANN ACM S THEOR, P37, DOI 10.1145/380752.380757.
  • [5] Quantum walk algorithm for element distinctness
    Ambainis, Andris
    [J]. SIAM JOURNAL ON COMPUTING, 2007, 37 (01) : 210 - 239
  • [6] A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice
    Bakr, Waseem S.
    Gillen, Jonathon I.
    Peng, Amy
    Foelling, Simon
    Greiner, Markus
    [J]. NATURE, 2009, 462 (7269) : 74 - U80
  • [7] Single-qubit unitary gates by graph scattering
    Blumer, Benjamin A.
    Underwood, Michael S.
    Feder, David L.
    [J]. PHYSICAL REVIEW A, 2011, 84 (06):
  • [8] Quantum logic gates in optical lattices
    Brennen, GK
    Caves, CM
    Jessen, PS
    Deutsch, IH
    [J]. PHYSICAL REVIEW LETTERS, 1999, 82 (05) : 1060 - 1063
  • [9] Quantum and Classical Correlations in Waveguide Lattices
    Bromberg, Yaron
    Lahini, Yoav
    Morandotti, Roberto
    Silberberg, Yaron
    [J]. PHYSICAL REVIEW LETTERS, 2009, 102 (25)
  • [10] Childs A.M., 2003, P 35 ANN ACM S THEOR, P59, DOI [DOI 10.1145/780542.780552, 10.1145/780542.780552]