Universal Computation by Multiparticle Quantum Walk

被引:364
作者
Childs, Andrew M. [1 ,2 ]
Gosset, David [1 ,2 ]
Webb, Zak [2 ,3 ]
机构
[1] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
[2] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[3] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1126/science.1229957
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A quantum walk is a time-homogeneous quantum-mechanical process on a graph defined by analogy to classical random walk. The quantum walker is a particle that moves from a given vertex to adjacent vertices in quantum superposition. We consider a generalization to interacting systems with more than one walker, such as the Bose-Hubbard model and systems of fermions or distinguishable particles with nearest-neighbor interactions, and show that multiparticle quantum walk is capable of universal quantum computation. Our construction could, in principle, be used as an architecture for building a scalable quantum computer with no need for time-dependent control.
引用
收藏
页码:791 / 794
页数:4
相关论文
共 33 条
[1]  
Aaronson S, 2011, ACM S THEORY COMPUT, P333
[2]  
Aharonov D., 2001, P 33 ANN ACM S THEOR, DOI [10.1145/380752.380758, DOI 10.1145/380752.380758]
[3]   Molecular binding in interacting quantum walks [J].
Ahlbrecht, Andre ;
Alberti, Andrea ;
Meschede, Dieter ;
Scholz, Volkher B. ;
Werner, Albert H. ;
Werner, Reinhard F. .
NEW JOURNAL OF PHYSICS, 2012, 14
[4]  
Ambainis A., 2001, P 33 ANN ACM S THEOR, P37, DOI 10.1145/380752.380757.
[5]   Quantum walk algorithm for element distinctness [J].
Ambainis, Andris .
SIAM JOURNAL ON COMPUTING, 2007, 37 (01) :210-239
[6]   A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice [J].
Bakr, Waseem S. ;
Gillen, Jonathon I. ;
Peng, Amy ;
Foelling, Simon ;
Greiner, Markus .
NATURE, 2009, 462 (7269) :74-U80
[7]   Single-qubit unitary gates by graph scattering [J].
Blumer, Benjamin A. ;
Underwood, Michael S. ;
Feder, David L. .
PHYSICAL REVIEW A, 2011, 84 (06)
[8]   Quantum logic gates in optical lattices [J].
Brennen, GK ;
Caves, CM ;
Jessen, PS ;
Deutsch, IH .
PHYSICAL REVIEW LETTERS, 1999, 82 (05) :1060-1063
[9]   Quantum and Classical Correlations in Waveguide Lattices [J].
Bromberg, Yaron ;
Lahini, Yoav ;
Morandotti, Roberto ;
Silberberg, Yaron .
PHYSICAL REVIEW LETTERS, 2009, 102 (25)
[10]  
Childs A.M., 2003, P 35 ANN ACM S THEOR, P59, DOI [DOI 10.1145/780542.780552, 10.1145/780542.780552]