Hierarchical interval type-2 fuzzy path planning based on genetic optimization

被引:13
|
作者
Zhao, Tao [1 ]
Xiang, Yunfang [1 ]
Dian, Songyi [1 ]
Guo, Rui [2 ]
Li, Shengchuan [3 ]
机构
[1] Sichuan Univ, Coll Elect Engn, Chengdu 610065, Peoples R China
[2] State Grid Shandong Elect Power Co, Jinan, Peoples R China
[3] State Grid Liaoning Elect Power Co Ltd, Elect Power Res Inst, Shenyang, Peoples R China
基金
国家重点研发计划;
关键词
Mobile robot; path planning; interval type-2 fuzzy; hierarchical fuzzy; genetic optimization; MOBILE ROBOT NAVIGATION; SYSTEMS; DESIGN; LOGIC; STABILIZATION; CONTROLLER;
D O I
10.3233/JIFS-191864
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper focuses on the path planning of mobile robot. Fuzzy logic is employed to deal with the uncertainty in the process of path planning. The hierarchical interval type-2 fuzzy method is obtained by combining the hierarchical fuzzy and interval type-2 fuzzy method, which is used in the path planning of mobile robot. Hierarchical fuzzy structure can simplify complex system and get fuzzy rules more easily. For multi input system, it can also solve the problem of rule explosion. Compared with type-1 fuzzy, interval type-2 fuzzy can better deal with the uncertainty in the process of path planning. Finally, in order to get a better path, genetic algorithm is used to optimize the membership function in the fuzzy path planner. Through the simulation experiment, the proposed hierarchical type-2 fuzzy planning method can effectively solve the path planning problem. Compared with the type-1 fuzzy method, the interval type-2 fuzzy method and the hierarchical type-1 fuzzy method, the proposed method obtains better results.
引用
收藏
页码:937 / 948
页数:12
相关论文
共 50 条
  • [1] Hierarchical Interval Type-2 Beta Fuzzy Knowledge Representation System for Path Preference Planning
    Zouari, Mariam
    Baklouti, Nesrine
    Kammoun, Habib
    Sanchez-Medina, Javier
    Ben Ayed, Mounir
    Alimi, Adel M.
    2017 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2017,
  • [2] Robot Path Planning Based on Interval Type-2 Fuzzy Controller Optimized by an Improved Aquila Optimization Algorithm
    Li, Kun
    Zhang, Xiang
    Han, Ying
    IEEE ACCESS, 2023, 11 : 111655 - 111671
  • [3] A Genetic Interval Type-2 Fuzzy Logic Based Approach for Operational Resource Planning
    Mohamed, Ahmed
    Hagras, Hani
    Liret, Anne
    Shakya, Sid
    Owusu, Gilbert
    2013 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ - IEEE 2013), 2013,
  • [4] Genetic Optimization of Interval Type-2 Fuzzy Reactive Controllers for Mobile Robots
    Melendez, Abraham
    Castillo, Oscar
    Melin, Patricia
    PROCEEDINGS OF THE 2013 JOINT IFSA WORLD CONGRESS AND NAFIPS ANNUAL MEETING (IFSA/NAFIPS), 2013, : 1418 - 1422
  • [5] Visual-Servoing Based Global Path Planning Using Interval Type-2 Fuzzy Logic Control
    Dirik, Mahmut
    Castillo, Oscar
    Kocamaz, Adnan Fatih
    AXIOMS, 2019, 8 (02)
  • [6] A GENETIC ALGORITHM FOR SOLVING FUZZY SHORTEST PATH PROBLEMS WITH INTERVAL TYPE-2 FUZZY ARC LENGTHS
    Dey, Arindam
    Pradhan, Rangaballav
    Pal, Anita
    Pal, Tandra
    MALAYSIAN JOURNAL OF COMPUTER SCIENCE, 2018, 31 (04) : 255 - 270
  • [7] Interval type-2 fuzzy automata and Interval type-2 fuzzy grammar
    S. Sharan
    B. K. Sharma
    Kavikumar Jacob
    Journal of Applied Mathematics and Computing, 2022, 68 : 1505 - 1526
  • [8] Interval type-2 fuzzy automata and Interval type-2 fuzzy grammar
    Sharan, S.
    Sharma, B. K.
    Jacob, Kavikumar
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (03) : 1505 - 1526
  • [9] Optimization of type-1, interval type-2 and general type-2 fuzzy inference systems using a hierarchical genetic algorithm for modular granular neural networks
    Melin, Patricia
    Sanchez, Daniela
    GRANULAR COMPUTING, 2019, 4 (02) : 211 - 236
  • [10] Optimization of type-1, interval type-2 and general type-2 fuzzy inference systems using a hierarchical genetic algorithm for modular granular neural networks
    Patricia Melin
    Daniela Sánchez
    Granular Computing, 2019, 4 : 211 - 236