On Geometrically Fast Convergence to Optimal Dominated Hypervolume of Set-based Multiobjective Evolutionary Algorithms

被引:0
作者
Rudolph, Guenter [1 ]
机构
[1] TU Dortmund Univ, Dept Comp Sci, D-44221 Dortmund, Germany
来源
2011 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC) | 2011年
关键词
OPTIMIZATION; SELECTION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The Pareto front of a multiobjective optimization problem can be approximated neatly by some versions of evolutionary algorithms. The quality of the approximation can be measured by the hypervolume that is dominated by the approximation. Open questions concern the existence of population-based evolutionary algorithms whose population converge to an approximation of the Pareto front with maximal dominated hypervolume for a given reference point and, if applicable, the convergence velocity. Here, the existence of such an algorithm is proven by providing a concrete example that converges to the maximal dominated hypervolume geometrically fast.
引用
收藏
页码:1719 / 1723
页数:5
相关论文
共 13 条
[1]  
[Anonymous], 2010, P GEN EV COMP C
[2]  
[Anonymous], 2005, MULTICRITERIA OPTIMI
[3]  
Auger A., 2009, FDN GENETIC ALGORITH, P87
[4]  
Beume N., 2011, FDN GENETIC ALGORITH
[5]   SMS-EMOA: Multiobjective selection based on dominated hypervolume [J].
Beume, Nicola ;
Naujoks, Boris ;
Emmerich, Michael .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2007, 181 (03) :1653-1669
[6]  
Beume N, 2010, LECT NOTES COMPUT SC, V6238, P597, DOI 10.1007/978-3-642-15844-5_60
[7]  
Beume N, 2009, LECT NOTES COMPUT SC, V5467, P21, DOI 10.1007/978-3-642-01020-0_7
[8]  
Bringmann K, 2010, LECT NOTES COMPUT SC, V6238, P607, DOI 10.1007/978-3-642-15844-5_61
[9]   Covariance matrix adaptation for multi-objective optimization [J].
Igel, Christian ;
Hansen, Nikolaus ;
Roth, Stefan .
EVOLUTIONARY COMPUTATION, 2007, 15 (01) :1-28
[10]   Algorithmic analysis of a basic evolutionary algorithm for continuous optimization [J].
Jaegerskuepper, Jens .
THEORETICAL COMPUTER SCIENCE, 2007, 379 (03) :329-347