Regularity of invariant measures for a class of perturbed Ornstein-Uhlenbeck operators

被引:18
作者
Bogachev, Vladimir I. [1 ]
Da Prato, Giuseppe [2 ]
Roeckner, Michael [3 ]
机构
[1] Moscow MV Lomonosov State Univ, Dept Mech & Math, Moscow 119899, Russia
[2] Scuola Normale Super Pisa, I-56126 Pisa, Italy
[3] Univ Bielefeld, Fac Math, D-33615 Bielefeld, Germany
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 1996年 / 3卷 / 02期
关键词
D O I
10.1007/BF01195918
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the framework of [5] we prove regularity of invariant measures mu for a class of Ornstein-Uhlenbeck operators perturbed by a drift which is not necessarily bounded or Lipschitz continuous. Regularity here means that mu is absolutely continuous with respect to the Gaussian invariant measure of the unperturbed operator with the square root of the Radon-Nikodym density in the corresponding Sobolev space of order 1.
引用
收藏
页码:261 / 268
页数:8
相关论文
共 8 条
[1]   CLASSICAL DIRICHLET FORMS ON TOPOLOGICAL VECTOR-SPACES - CLOSABILITY AND A CAMERON-MARTIN FORMULA [J].
ALBEVERIO, S ;
ROCKNER, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 88 (02) :395-436
[2]  
[Anonymous], 1992, ENCY MATH ITS APPL
[3]  
BOGACHEV V. I., 1994, J FUNCT ANA IN PRESS
[4]  
DA PRATO G., 1992, J FUNCT ANA IN PRESS
[5]  
DAPRATO G, 1992, CR ACAD SCI I-MATH, V315, P1287
[6]  
PESZAT S., B POL ACAD IN PRESS
[7]  
SHIGEKAWA I, 1987, OSAKA J MATH, V24, P37
[8]  
Vakhania N.N., 1985, Probability Distributions on Banach Spaces