Entropic transport in a crowded medium

被引:9
作者
Arango-Restrepo, A. [1 ,3 ]
Rubi, J. M. [1 ,2 ]
机构
[1] Univ Barcelona, Fac Fis, Dept Fis Mat Condensada, Barcelona, Spain
[2] Norwegian Univ Sci & Technol, Dept Phys, PoreLab, Trondheim, Norway
[3] Univ Barcelona, Inst Nanociencia & Nanotecnol, Barcelona, Spain
关键词
DARCY FLOW; FLUID; HYDRODYNAMICS; CHEMOTAXIS; DIFFUSION; PRESSURE; MOTION; WATER;
D O I
10.1063/5.0008517
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
To know how liquid matter moves through a crowded medium due to the action of a force constitutes currently a problem of great practical importance, present in cases as diverse as the transport of particles through a cell membrane and through a particulate porous medium. To calculate the mass flow through the system, we present an approach that emulates the texture of the medium by using entropic barriers that the particles must overcome in order to move. The model reproduces the scaling behavior of the velocity with the force found in many systems in order to show how the scaling exponent depends on the micro-structure of the medium. Our model offers a new perspective that is able to characterize the flow of matter through the medium and may be useful in studies of nano-fluids, oil recovery, soil drainage, tissue engineering, and drug delivery.
引用
收藏
页数:7
相关论文
共 40 条
  • [1] Local Pore Size Correlations Determine Flow Distributions in Porous Media
    Alim, Karen
    Parsa, Shima
    Weitz, David A.
    Brenner, Michael P.
    [J]. PHYSICAL REVIEW LETTERS, 2017, 119 (14)
  • [2] DETERMINATION OF EFFECTIVE TRANSPORT-COEFFICIENTS FOR BACTERIAL MIGRATION IN SAND COLUMNS
    BARTON, JW
    FORD, RM
    [J]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1995, 61 (09) : 3329 - 3335
  • [3] Nonlinear response and emerging nonequilibrium microstructures for biased diffusion in confined crowded environments
    Benichou, O.
    Illien, P.
    Oshanin, G.
    Sarracino, A.
    Voituriez, R.
    [J]. PHYSICAL REVIEW E, 2016, 93 (03)
  • [4] Microscopic Theory for Negative Differential Mobility in Crowded Environments
    Benichou, O.
    Illien, P.
    Oshanin, G.
    Sarracino, A.
    Voituriez, R.
    [J]. PHYSICAL REVIEW LETTERS, 2014, 113 (26)
  • [5] PROGRESS ON THE THEORY OF FLOW IN GEOLOGIC MEDIA WITH THRESHOLD GRADIENT
    BERNADINER, MG
    PROTOPAPAS, AL
    [J]. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH PART A-ENVIRONMENTAL SCIENCE AND ENGINEERING & TOXIC AND HAZARDOUS SUBSTANCE CONTROL, 1994, 29 (01): : 249 - 275
  • [6] Bacterial hopping and trapping in porous media
    Bhattacharjee, Tapomoy
    Datta, Sujit S.
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [7] Biased diffusion in confined media:: Test of the Fick-Jacobs approximation and validity criteria
    Burada, P. S.
    Schmid, G.
    Reguera, D.
    Rubi, J. M.
    Haenggi, P.
    [J]. PHYSICAL REVIEW E, 2007, 75 (05):
  • [8] Unbiased Diffusion through a Linear Porous Media with Periodic Entropy Barriers: A Tube Formed by Contacting Ellipses
    Chavez, Yoshua
    Vazquez, Marco-Vinicio
    Dagdug, Leonardo
    [J]. JOURNAL OF CHEMISTRY, 2015, 2015
  • [9] Darcy H, 1856, un appendice relatif aux fournitures d'eau de plusieurs villes au filtrage des eaux, V1
  • [10] Pre-Darcy Flow in Porous Media
    Dejam, Marteza
    Hassanzadeh, Hassan
    Chen, Zhangxin
    [J]. WATER RESOURCES RESEARCH, 2017, 53 (10) : 8187 - 8210