Plankton Classification with Deep Convolutional Neural Networks

被引:0
|
作者
Ouyang Py [1 ]
Hu Hong [1 ]
Shi Zhongzhi [1 ]
机构
[1] Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing, Peoples R China
关键词
deep learning; image classification; convolutional neural network;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Traditional methods for measuring and monitoring plankton populations are time consuming and can not scale to the granularity or scope necessary for large-scale studies. Improved approaches are needed. Manual analysis of the imagery captured by underwater camera system is infeasible. Automated image classification using machine learning tools is an alternative to the manual approach. In this paper, we present a deep neural network model for plankton classification which exploits translational and rotational symmetry. In this work, we propose two constrains in the design of deep convolutional neural network structure to guarantee the performance gain when going deep. Firstly, for each convolutional layer, its capacity of learning more complex patterns should be guaranteed; Secondly, the receptive field of the topmost layer should be no larger than the image region. We also developed a "inception layer" like structure to deal with multi-size imagery input with convolutional neural network. The experimental result on Plankton Set 1.0 imagery data set show the feasibility and effectiveness of the proposed method.
引用
收藏
页码:132 / 136
页数:5
相关论文
共 50 条
  • [1] Automated plankton classification from holographic imagery with deep convolutional neural networks
    Guo, Buyu
    Nyman, Lisa
    Nayak, Aditya R.
    Milmore, David
    McFarland, Malcolm
    Twardowski, Michael S.
    Sullivan, James M.
    Yu, Jia
    Hong, Jiarong
    LIMNOLOGY AND OCEANOGRAPHY-METHODS, 2021, 19 (01): : 21 - 36
  • [2] ImageNet Classification with Deep Convolutional Neural Networks
    Krizhevsky, Alex
    Sutskever, Ilya
    Hinton, Geoffrey E.
    COMMUNICATIONS OF THE ACM, 2017, 60 (06) : 84 - 90
  • [3] WEATHER CLASSIFICATION WITH DEEP CONVOLUTIONAL NEURAL NETWORKS
    Elhoseiny, Mohamed
    Huang, Sheng
    Elgammal, Ahmed
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 3349 - 3353
  • [4] Malware Classification with Deep Convolutional Neural Networks
    Kalash, Mahmoud
    Rochan, Mrigank
    Mohammed, Noman
    Bruce, Neil D. B.
    Wang, Yang
    Iqbal, Farkhund
    2018 9TH IFIP INTERNATIONAL CONFERENCE ON NEW TECHNOLOGIES, MOBILITY AND SECURITY (NTMS), 2018,
  • [5] Covert photo classification by deep convolutional neural networks
    Haiqiang Zuo
    Haitao Lang
    Erik Blasch
    Haibin Ling
    Machine Vision and Applications, 2017, 28 : 623 - 634
  • [6] Malware Classification using Deep Convolutional Neural Networks
    Kornish, David
    Geary, Justin
    Sansing, Victor
    Ezekiel, Soundararajan
    Pearlstein, Larry
    Njilla, Laurent
    2018 IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP (AIPR), 2018,
  • [7] Pulsar candidate classification with deep convolutional neural networks
    Wang, Yuan-Chao
    Li, Ming-Tao
    Pan, Zhi-Chen
    Zheng, Jian-Hua
    RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2019, 19 (09)
  • [8] Histopathological Image Classification with Deep Convolutional Neural Networks
    Alom, Md Zahangir
    Aspiras, Theus
    Taha, Tarek M.
    Asari, Vijayan K.
    APPLICATIONS OF MACHINE LEARNING, 2019, 11139
  • [9] Deep Convolutional Neural Networks for Diabetic Retinopathy Classification
    Lian, Chunyan
    Liang, Yixiong
    Kang, Rui
    Xiang, Yao
    ICAIP 2018: 2018 THE 2ND INTERNATIONAL CONFERENCE ON ADVANCES IN IMAGE PROCESSING, 2018, : 68 - 72
  • [10] Galaxy morphology classification with deep convolutional neural networks
    Zhu, Xiao-Pan
    Dai, Jia-Ming
    Bian, Chun-Jiang
    Chen, Yu
    Chen, Shi
    Hu, Chen
    ASTROPHYSICS AND SPACE SCIENCE, 2019, 364 (04)