Solutions with interior and boundary peaks for the Neumann problem of an elliptic system of FitzHugh-Nagumo type

被引:13
作者
Dancer, EN [1 ]
Yan, SS
机构
[1] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
[2] Univ New England, Sch Math Stat & Comp Sci, Armidale, NSW 2351, Australia
关键词
nonlinear boundary value problems; small diffusion;
D O I
10.1512/iumj.2006.55.2614
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the existence of peak solutions for the Neumann problem of an elliptic system of FitzHugh-Nagumo type. The solutions we construct have arbitrary many peaks on the boundary and arbitrary many peaks inside the domain, and all the peaks of the solutions approach some local minimum points of the mean curvature function of the boundary.
引用
收藏
页码:217 / 258
页数:42
相关论文
共 29 条
[1]  
[Anonymous], INTERFACES FREE BOUN
[2]  
Bahri A., 1989, RES NOTES MATH, V182
[3]   Equilibria with many nuclei for the Cahn-Hilliard equation [J].
Bates, PW ;
Fusco, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2000, 160 (02) :283-356
[4]   Symmetric solutions for a Neumann problem involving critical exponent [J].
Cao, DM ;
Noussair, ES ;
Yan, SS .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2001, 131 :1039-1064
[5]  
Dancer EN, 2003, ANN SCUOLA NORM-SCI, V2, P679
[6]  
Dancer EN, 1999, INDIANA U MATH J, V48, P1177
[7]   Multipeak solutions for the Neumann problem of an elliptic system of Fitzhugh-Nagumo type [J].
Dancer, EN ;
Yan, S .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2005, 90 :209-244
[8]   Multipeak solutions for a singularly perturbed Neumann problem [J].
Dancer, EN ;
Yan, SS .
PACIFIC JOURNAL OF MATHEMATICS, 1999, 189 (02) :241-262
[9]   A minimization problem associated with elliptic systems of FitzHugh-Nagumo type [J].
Dancer, EN ;
Yan, SS .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2004, 21 (02) :237-253
[10]  
DANCER EN, 2000, J DIFF INT EQUATIONS, V13, P747