A Study of Mechanics in Brittle-Ductile Cutting Mode Transition

被引:28
作者
Xiao, Gaobo [1 ]
Ren, Mingjun [1 ]
To, Suet [2 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Mech Engn, Shanghai 200240, Peoples R China
[2] Hong Kong Polytech Univ, Dept Ind & Syst Engn, Hong Kong 999077, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
ultra-precision machining; brittle-ductile cutting mode transition; mechanics analysis; critical undeformed chip thickness; silicon carbide; SINGLE-CRYSTAL SILICON; MOLECULAR-DYNAMICS SIMULATION; UNDEFORMED CHIP THICKNESS; CRYSTALLOGRAPHIC ORIENTATION; COOLING CONDITIONS; CALCIUM-FLUORIDE; REGIME; CARBIDE; DEFORMATION; REMOVAL;
D O I
10.3390/mi9020049
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This paper presents an investigation of the mechanism of the brittle-ductile cutting mode transition from the perspective of the mechanics. A mechanistic model is proposed to analyze the relationship between undeformed chip thickness, deformation, and stress levels in the elastic stage of the periodic chip formation process, regarding whether brittle or ductile mode deformation is to follow the elastic stage. It is revealed that, the distance of tool advancement required to induce the same level of compressive stress decreases with undeformed chip thickness, and thereby the tensile stress below and behind the tool decreases with undeformed chip thickness. As a result, the tensile stress becomes lower than the critical tensile stress for brittle fracture when the undeformed chip thickness becomes sufficiently small, enabling the brittle-ductile cutting mode transition. The finite element method is employed to verify the analysis of the mechanics on a typical brittle material 6H silicon carbide, and confirmed that the distance of the tool advancement required to induce the same level of compressive stress becomes smaller when the undeformed chip thickness decreases, and consequently smaller tensile stress is induced below and behind the tool. The critical undeformed chip thicknesses for brittle-ductile cutting mode transition are estimated according to the proposed mechanics, and are verified by plunge cutting experiments in a few crystal directions. This study should contribute to better understanding of the mechanism of brittle-ductile cutting mode transition and the ultra-precision machining of brittle materials.
引用
收藏
页数:17
相关论文
共 55 条
[1]  
Adachi S., 2004, Handbook on Physical Properties of Semiconductors, V1-3
[2]  
[Anonymous], 1994, CIRP ANN MANUF TECHN
[3]  
[Anonymous], 1983, CIRP ANN-MANUF TECHN, DOI DOI 10.1016/S0007-8506(07)63366-6
[4]   A predictive model of the critical undeformed chip thickness for ductile-brittle transition in nano-machining of brittle materials [J].
Arif, Muhammad ;
Zhang Xinquan ;
Rahman, Mustafizur ;
Kumar, Senthil .
INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE, 2013, 64 :114-122
[5]   Re-evaluation of the basic mechanics of orthogonal metal cutting: velocity diagram, virtual work equation and upper-bound theorem [J].
Astakhov, VP ;
Osman, MOM ;
Hayajneh, MT .
INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE, 2001, 41 (03) :393-418
[6]   Ductile-regime grinding. A new technology for machining brittle materials [J].
Bifano, T.G. ;
Dow, T.A. ;
Scattergood, R.O. .
Journal of engineering for industry, 1991, 113 (02) :184-189
[7]   Chip topography for ductile-regime machining of germanium [J].
Blackley, W.S. ;
Scattergood, R.O. .
Journal of engineering for industry, 1994, 116 (02) :263-266
[8]   DUCTILE-REGIME MACHINING MODEL FOR DIAMOND TURNING OF BRITTLE MATERIALS [J].
BLACKLEY, WS ;
SCATTERGOOD, RO .
PRECISION ENGINEERING-JOURNAL OF THE AMERICAN SOCIETY FOR PRECISION ENGINEERING, 1991, 13 (02) :95-103
[9]   Study of the mechanism of nanoscale ductile mode cutting of silicon using molecular dynamics simulation [J].
Cai, M. B. ;
Li, X. P. ;
Rahman, M. .
INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE, 2007, 47 (01) :75-80
[10]   EFFECT OF CRYSTALLOGRAPHIC ORIENTATION ON CUTTING FORCES AND SURFACE FINISH IN DUCTILE CUTTING OF KDP CRYSTALS [J].
Chen, Haofeng ;
Dai, Yifan ;
Zheng, Ziwen ;
Gao, Hang ;
Li, Xiaoping .
MACHINING SCIENCE AND TECHNOLOGY, 2011, 15 (02) :231-242