A New Algorithm for Multicomponent Signals Analysis Based on SynchroSqueezing: With an Application to Signal Sampling and Denoising

被引:147
作者
Meignen, Sylvain [1 ]
Oberlin, Thomas [2 ]
McLaughlin, Stephen [3 ]
机构
[1] Univ Edinburgh, IDCOM Lab, Edinburgh EH8 9YL, Midlothian, Scotland
[2] Univ Grenoble, Jean Kuntzmann Lab, F-38100 Grenoble, France
[3] Heriot Watt Univ, Sch Engn & Phys Sci, Edinburgh EH14 4AS, Midlothian, Scotland
基金
英国工程与自然科学研究理事会;
关键词
Denoising; EMD; sampling; synchrosqueezing; time-frequency; wavelets; EMPIRICAL MODE DECOMPOSITION; HILBERT SPECTRUM; FREQUENCY;
D O I
10.1109/TSP.2012.2212891
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we address the problem of the retrieval of the components from a multicomponent signal using ideas from the synchrosqueezing framework. The emphasis is on the wavelet choice and we propose a novel algorithm based first on the detection of components followed by their reconstruction. Simulations illustrate how the proposed procedure compares with the empirical mode decomposition and other related methods in terms of mode-mixing. We conclude the paper by studying the sensitivity of the proposed technique to sampling and an application to signal denoising.
引用
收藏
页码:5787 / 5798
页数:12
相关论文
共 19 条
  • [1] Brevdo E., 2011, 11050010 ARXIV
  • [2] Brevdo E., SYNCHOSQUEEZING TOOL
  • [3] Multiridge detection and time-frequency reconstruction
    Carmona, RA
    Hwang, WL
    Torrésani, B
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1999, 47 (02) : 480 - 492
  • [4] Differential reassignment
    ChassandeMottin, E
    Daubechies, I
    Auger, F
    Flandrin, P
    [J]. IEEE SIGNAL PROCESSING LETTERS, 1997, 4 (10) : 293 - 294
  • [5] Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool
    Daubechies, Ingrid
    Lu, Jianfeng
    Wu, Hau-Tieng
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2011, 30 (02) : 243 - 261
  • [6] IDEAL SPATIAL ADAPTATION BY WAVELET SHRINKAGE
    DONOHO, DL
    JOHNSTONE, IM
    [J]. BIOMETRIKA, 1994, 81 (03) : 425 - 455
  • [7] Time-Frequency Energy Distributions Meet Compressed Sensing
    Flandrin, Patrick
    Borgnat, Pierre
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (06) : 2974 - 2982
  • [8] Hildebrand FB, 1956, INTRO NUMERICAL ANAL, P314
  • [9] EMD Revisited: A New Understanding of the Envelope and Resolving the Mode-Mixing Problem in AM-FM Signals
    Hu, Xiyuan
    Peng, Silong
    Hwang, Wen-Liang
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (03) : 1075 - 1086
  • [10] The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
    Huang, NE
    Shen, Z
    Long, SR
    Wu, MLC
    Shih, HH
    Zheng, QN
    Yen, NC
    Tung, CC
    Liu, HH
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1998, 454 (1971): : 903 - 995