A class of meromorphically multivalent functions defined by means of a linear operator

被引:15
作者
Yang, Ding-Gong [2 ]
Liu, Jin-Lin [1 ]
机构
[1] Yangzhou Univ, Dept Math, Yangzhou 225002, Peoples R China
[2] Suzhou Univ, Dept Math, Suzhou 215006, Peoples R China
关键词
Meromorphic function; Multivalent function; Convex univalent function; Linear operator; Hadamard product (or convolution); Integral operator; Subordination;
D O I
10.1016/j.amc.2008.07.028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Sigma(p) denote the class of functions of the form: f(z) = z(-p) + Sigma(infinity)(n=1)a(n)z(n-p) (n epsilon N = {1, 2, 3, ...}), which are analytic in the punctured open unit disk U(0) = {z : 0 < vertical bar z vertical bar < 1}. Making use of a linear operator, which is defined here by means of the Hadamard product (or convolution), we introduce a new subclass M(p)(a, c, lambda; h) of Sigma(p) and investigate some properties for the class M(p)(a, c, lambda; h). (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:862 / 871
页数:10
相关论文
共 11 条
[1]   SUBORDINATION BY CONVEX FUNCTIONS [J].
HALLENBECK, DJ ;
RUSCHEWEYH, S .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 52 (OCT) :191-195
[2]   A linear operator and associated families of meromorphically multivalent functions [J].
Liu, JL ;
Srivastava, HM .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 259 (02) :566-581
[3]  
MILLER SS, 1981, MICH MATH J, V28, P157
[4]  
Ruscheweyh S., 1982, CONVOLUTIONS GEOMETR
[5]   CONVOLUTION PROPERTIES OF A CLASS OF STARLIKE FUNCTIONS [J].
SINGH, R ;
SINGH, S .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 106 (01) :145-152
[6]   Some subclasses of meromorphically multivalent functions associated with a linear operator [J].
Srivastava, H. M. ;
Yang, Ding-Gong ;
Xu, N-Eng .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 195 (01) :11-23
[7]   An integral operator associated with the Hurwitz-Lerch Zeta function and differential subordination [J].
Srivastava, H. M. ;
Attiya, A. A. .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2007, 18 (03) :207-216
[8]  
Srivastava H. M., 1989, UNIVALENT FUNCTIONS
[9]  
Srivastava H. M., 1992, Current Topics in Analytic Function Theory
[10]   A certain class of p-valently analytic functions [J].
Srivastava, HM ;
Patel, J ;
Mohapatra, GP .
MATHEMATICAL AND COMPUTER MODELLING, 2005, 41 (2-3) :321-334