Three new almost positively curved manifolds

被引:1
作者
DeVito, Jason [1 ]
机构
[1] Univ Tennessee, Dept Math, Martin, TN 38238 USA
关键词
Almost positive curvature; Homogeneous spaces; RIEMANNIAN-MANIFOLDS; CURVATURE; EXAMPLES; FAMILY;
D O I
10.1007/s10711-020-00559-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Riemannian manifold is called almost positively curved if the set of points for which all 2-planes have positive sectional curvature is open and dense. We find three new examples of almost positively curved manifolds: Sp(3)/Sp(1)(2), and two circle quotients of Sp(3)/Sp(1)(2). We also show the quasi-positively curved metric of Tapp (J Differ Geom 65:273-287, 2003) on Sp(n + 1)/Sp(n - 1) Sp(1) is not almost positively curved if n >= 3.
引用
收藏
页码:281 / 298
页数:18
相关论文
共 29 条
[21]  
ONEILL B, 1966, MICH MATH J, V13, P459
[22]   Examples of Riemannian manifolds with positive curvature almost everywhere [J].
Petersen, Peter ;
Wilhelm, Frederick .
GEOMETRY & TOPOLOGY, 1999, 3 :331-367
[23]   ON THE TOPOLOGY OF DOUBLE COSET MANIFOLDS [J].
SINGHOF, W .
MATHEMATISCHE ANNALEN, 1993, 297 (01) :133-146
[24]   PARALLELIZABILITY OF HOMOGENEOUS SPACES .2. [J].
SINGHOF, W ;
WEMMER, D .
MATHEMATISCHE ANNALEN, 1986, 274 (01) :157-176
[25]  
Tapp K, 2003, J DIFFER GEOM, V65, P273
[26]  
Tapp K, 2009, ASIAN J MATH, V13, P459
[27]   COMPACT HOMOGENEOUS RIEMANNIAN MANIFOLDS WITH STRICTLY POSITIVE CURVATURE [J].
WALLACH, NR .
ANNALS OF MATHEMATICS, 1972, 96 (02) :277-&
[28]   Exotic Spheres with lots of Positive Curvatures [J].
Wilhelm, Frederick .
JOURNAL OF GEOMETRIC ANALYSIS, 2001, 11 (01) :161-186
[29]   Manifolds with positive sectional curvature almost everywhere [J].
Wilking, B .
INVENTIONES MATHEMATICAE, 2002, 148 (01) :117-141