The crystal structure of tin sulphate, SnSO4, and comparison with isostructural SrSO4, PbSO4, and BaSO4

被引:9
作者
Antao, Sytle M. [1 ]
机构
[1] Univ Calgary, Dept Geosci, Calgary, AB T2N 1N4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
SnSO4; SrSO4; PbSO4; BaSO4; Rietveld refinement; HRPXRD; crystal structure; POWDER DIFFRACTION; HIGH-PRESSURE; SO4; GROUPS; ANGLESITE; BARITE; REFINEMENT; CELESTINE; TRENDS; CASO4;
D O I
10.1017/S0885715612000450
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The crystal structure of tin (II) sulphate, SnSO4, was obtained by Rietveld refinement using synchrotron high-resolution powder X-ray diffraction (HRPXRD) data. The structure was refined in space group Pbnm. The unit-cell parameters for SnSO4 are a = 7.12322(1), b = 8.81041(1), c = 5.32809 (I) angstrom, and V = 334.383(1) angstrom(3). The average < Sn-O > [12] distance is 2.9391(4) angstrom. However, the Sn(2+)cation has a pyramidal [3]-coordination to O atoms and the average < Sn-O > [3] = 2.271(1) angstrom. If Sn is considered as [12]-coordinated, SnSO4 has a structure similar to barite, BaSO4, and its structural parameters are intermediate between those of BaSO4 and PbSO4. The tetrahedral SO4 group has an average < Sn-O > [4] = 1.472(1) angstrom in SnSO4. Comparing SnSO4 with the isostructural SrSO4, PbSO4, and BaSO4, several well-defined trends are observed. The radii, rM, of the M2+(=Sr, Pb, Sn, and Ba) cations and average < Sn-O > distances vary linearly with V because of the effective size of the M(2+)cation. Based on the trend for the isostructural sulphates, the average < Sn-O > [12] distance is slightly longer than expected because of the lone pair of electrons on the Sn(2+)cation. (C) 2012 International Centre for Diffraction Data [doi:10.1017/S0885715612000450]
引用
收藏
页码:179 / 183
页数:5
相关论文
共 23 条
[11]  
HILL RJ, 1977, CAN MINERAL, V0015
[12]   The high pressure crystal structures of tin sulphate: a case study for maximal information recovery from 2D powder diffraction data [J].
Hinrichsen, Bemd ;
Dinnebier, Robert E. ;
Liu, Haozhe ;
Jansen, Martin .
ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 2008, 223 (03) :195-203
[13]  
Jacobsen SD, 1998, CAN MINERAL, V36, P1053
[14]   The crystals structure of barytes, celestine and anglesite. [J].
James, RW ;
Wood, WA .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-CONTAINING PAPERS OF A MATHEMATICAL AND PHYSICAL CHARACTER, 1925, 109 (752) :598-620
[15]  
Larson A.C., 2000, 8674 LAUR LOS AL NAT
[16]   A twelve-analyzer detector system for high-resolution powder diffraction [J].
Lee, Peter L. ;
Shu, Deming ;
Ramanathan, Mohan ;
Preissner, Curt ;
Wang, Jun ;
Beno, Mark A. ;
Von Dreele, Robert B. ;
Ribaud, Lynn ;
Kurtz, Charles ;
Antao, Sytle M. ;
Jiao, Xuesong ;
Toby, Brian H. .
JOURNAL OF SYNCHROTRON RADIATION, 2008, 15 (427-432) :427-432
[17]  
MIYAKE M, 1978, AM MINERAL, V63, P506
[18]  
RENTZEPERIS PJ, 1962, Z KRISTALLOGRAPHIE, V0117
[19]   A PROFILE REFINEMENT METHOD FOR NUCLEAR AND MAGNETIC STRUCTURES [J].
RIETVELD, HM .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 1969, 2 :65-&
[20]   REVISED EFFECTIVE IONIC-RADII AND SYSTEMATIC STUDIES OF INTERATOMIC DISTANCES IN HALIDES AND CHALCOGENIDES [J].
SHANNON, RD .
ACTA CRYSTALLOGRAPHICA SECTION A, 1976, 32 (SEP1) :751-767