On force fields for molecular dynamics simulations of crystalline silica

被引:35
作者
Cowen, Benjamin J. [1 ,2 ]
El-Genk, Mohamed S. [1 ,2 ,3 ,4 ]
机构
[1] Univ New Mexico, Inst Space & Nucl Power Studies, Albuquerque, NM 87131 USA
[2] Univ New Mexico, Dept Nucl Engn, Albuquerque, NM 87131 USA
[3] Univ New Mexico, Dept Mech Engn, Albuquerque, NM 87131 USA
[4] Univ New Mexico, Chem & Biol Engn Dept, Albuquerque, NM 87131 USA
关键词
MD simulations; Force fields; Potentials; Crystalline silica; Phase transition; Computation time; EQUATION-OF-STATE; PHASE-TRANSITION; HIGH-PRESSURE; QUARTZ CRYSTALLIZATION; COMPUTER-SIMULATION; ELASTIC PROPERTIES; ALPHA-QUARTZ; ENERGY; GLASS; STISHOVITE;
D O I
10.1016/j.commatsci.2015.05.018
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper reviews and examines interatomic potentials or force fields for molecular dynamics (MD) simulation of crystalline silica. The investigated potentials are the BKS, Pedone, Munetoh, TTAM, and CHIK. The calculated values of the lattice constants, density, radial and bond-angle distribution functions, equations of state, and phase transitions using different potentials are compared to experimental values for polymorphs of silica: quartz, cristobalite, coesite, and stishovite. Simulation results with the BKS potential accurately predict the experimental measurements to within 2%, and converge within a reasonable timeframe on an average workstation. The Pedone potential, also parameterized for other metallic oxides, computationally is slightly more expensive and is not as accurate. The simulations with both the CHIK and TTAM potentials are less accurate than with the BKS potential for modeling silica over the entire range of the phase diagram. The simulations with the Munetoh potential are by far the cheapest in terms of the modest computational requirements, but unsuitable for modeling crystalline silica. It could not produce the nature of the alpha-beta and I-II phase transitions in quartz or the equation of state for stishovite silica, and the predicted structural properties sometimes differ from experimental values by more than 10%. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:88 / 101
页数:14
相关论文
共 50 条
  • [1] Force fields and molecular dynamics simulations
    Gonzalez, M. A.
    NEUTRONS ET SIMULATIONS, JDN 18, 2010, : 169 - 200
  • [2] Evaluation of Force Fields for Molecular Dynamics Simulations of Platinum in Bulk and Nanoparticle Forms
    Espinosa, Ingrid M. Padilla
    Jacobs, Tevis D. B.
    Martini, Ashlie
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2021, 17 (07) : 4486 - 4498
  • [3] Implementing reactivity in molecular dynamics simulations with harmonic force fields
    Winetrout, Jordan J.
    Kanhaiya, Krishan
    Kemppainen, Joshua
    in 't Veld, Pieter J.
    Sachdeva, Geeta
    Pandey, Ravindra
    Damirchi, Behzad
    van Duin, Adri
    Odegard, Gregory M.
    Heinz, Hendrik
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [4] Silica molecular dynamic force fields-A practical assessment
    Soules, Thomas F.
    Gilmer, George H.
    Matthews, Manyalibo J.
    Stolken, James S.
    Feit, Michael D.
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2011, 357 (6-7) : 1564 - 1573
  • [5] Molecular dynamics simulations of hexopyranose ring distortion in different force fields
    Plazinski, Wojciech
    Plazinska, Anita
    PURE AND APPLIED CHEMISTRY, 2017, 89 (09) : 1283 - 1294
  • [6] Assessment of Biomolecular Force Fields for Molecular Dynamics Simulations in a Protein Crystal
    Hu, Zhongqiao
    Jiang, Jianwen
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2010, 31 (02) : 371 - 380
  • [7] A Comparison of Classical Force-Fields for Molecular Dynamics Simulations of Lubricants
    Ewen, James P.
    Gattinoni, Chiara
    Thakkar, Foram M.
    Morgan, Neal
    Spikes, Hugh A.
    Dini, Daniele
    MATERIALS, 2016, 9 (08):
  • [8] DLPGEN: Preparing Molecular Dynamics Simulations with Support for Polarizable Force Fields
    Bernardes, Carlos E. S.
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2022, 62 (06) : 1471 - 1478
  • [9] Modern protein force fields behave comparably in molecular dynamics simulations
    Price, DJ
    Brooks, CL
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2002, 23 (11) : 1045 - 1057
  • [10] Towards exact molecular dynamics simulations with machine-learned force fields
    Chmiela, Stefan
    Sauceda, Huziel E.
    Mueller, Klaus-Robert
    Tkatchenko, Alexandre
    NATURE COMMUNICATIONS, 2018, 9