Spatially-resolved individual particle spectroscopy using photothermal modulation of Mie scattering

被引:12
作者
Sullenberger, R. M. [1 ]
Redmond, S. M. [1 ]
Crompton, D. [1 ]
Stolyarov, A. M. [1 ]
Herzog, W. D. [1 ]
机构
[1] MIT, Lincoln Lab, 244 Wood St, Lexington, MA 02421 USA
关键词
AEROSOL-PARTICLE;
D O I
10.1364/OL.42.000203
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We report a photothermal modulation of Mie scattering (PMMS) method that enables concurrent spatial and spectral discrimination of individual micron-sized particles. This approach provides a direct measurement of the "fingerprint" infrared absorption spectrum with the spatial resolution of visible light. Trace quantities (tens of picograms) of material were deposited onto an infrared-transparent substrate and simultaneously illuminated by a wavelength-tunable intensity-modulated quantum cascade pump laser and a continuous-wave 532 nm probe laser. Absorption of the pump laser by the particles results in direct modulation of the scatter field of the probe laser. The probe light scattered from the interrogated region is imaged onto a visible camera, enabling simultaneous probing of spatially-separated individual particles. By tuning the wavelength of the pump laser, the IR absorption spectrum is obtained. Using this approach, we measured the infrared absorption spectra of individual 3 mu m PMMA and silica spheres. Experimental PMMS signal amplitudes agree with modeling using an extended version of the Mie scattering theory for particles on substrates, enabling the prediction of the PMMS signal magnitude based on the material and substrate properties. (C) 2017 Optical Society of America
引用
收藏
页码:203 / 206
页数:4
相关论文
共 21 条
[1]   AEROSOL-PARTICLE MOLECULAR-SPECTROSCOPY [J].
ARNOLD, S ;
MURPHY, EK ;
SAGEEV, G .
APPLIED OPTICS, 1985, 24 (07) :1048-1053
[2]  
ARNOLD S, 1984, OPT LETT, V9, P4, DOI 10.1364/OL.9.000004
[3]  
ARNOLD S, 1982, APPL OPTICS, V21, P4194, DOI 10.1364/AO.21.4194_1
[4]   OBSERVATION OF OPTICAL RESONANCES OF DIELECTRIC SPHERES BY LIGHT-SCATTERING [J].
ASHKIN, A ;
DZIEDZIC, JM .
APPLIED OPTICS, 1981, 20 (10) :1803-1814
[5]  
BEAUCHAINE JP, 1988, MIKROCHIM ACTA, V1, P133
[6]   Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals [J].
Berciaud, S ;
Cognet, L ;
Blab, GA ;
Lounis, B .
PHYSICAL REVIEW LETTERS, 2004, 93 (25)
[7]   Photothermal imaging of nanometer-sized metal particles among scatterers [J].
Boyer, D ;
Tamarat, P ;
Maali, A ;
Lounis, B ;
Orrit, M .
SCIENCE, 2002, 297 (5584) :1160-1163
[8]  
Capillo A. J., 1981, APPL OPTICS, V20, P3100
[9]  
Chalmers J.M., 2012, Infrared and Raman spectroscopy in forensic science, DOI DOI 10.1002/9781119962328.CH3
[10]   Advances in photo-thermal infrared imaging microspectroscopy [J].
Furstenberg, Robert ;
Kendziora, Chris ;
Papantonakis, Michael ;
Viet Nguyen ;
McGill, Andrew .
SCANNING MICROSCOPIES 2013: ADVANCED MICROSCOPY TECHNOLOGIES FOR DEFENSE, HOMELAND SECURITY, FORENSIC, LIFE, ENVIRONMENTAL, AND INDUSTRIAL SCIENCES, 2013, 8729