New breakdown-free variant of AINV method for nonsymmetric positive definite matrices

被引:3
作者
Rafiei, A. [1 ]
Toutounian, F. [1 ]
机构
[1] Ferdowsi Univ Mashhad, Dept Math, Mashhad, Iran
关键词
factored approximate inverses; AINV; SAINV and AINV-A methods; preconditioning; Krylov subspace methods; sparse matrices;
D O I
10.1016/j.cam.2007.07.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper proposes a new breakdown-free preconditioning technique. called SAINV-NS, of the AINV method of Benzi and Tuma for nonsymmetric positive definite matrices. The resulting preconditioner which is an incomplete factorization of the inverse of a nonsymmetric matrix will be used as an explicit right preconditioner for QMR. BiCGSTAB and GMRES(m) methods. The preconditioner is reliable (pivot breakdown can not occur) and effective at reducing the number of iterations. Some numerical experiments on test matrices are presented to show the efficiency of the new method and comparing to the AINV-A algorithm. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:72 / 80
页数:9
相关论文
共 9 条
[1]   Robust approximate inverse preconditioning for the conjugate gradient method [J].
Benzi, M ;
Cullum, JK ;
Tuma, M .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 22 (04) :1318-1332
[2]   A sparse approximate inverse preconditioner for nonsymmetric linear systems [J].
Benzi, M ;
Tuma, M .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 19 (03) :968-994
[3]   A sparse approximate inverse preconditioner for the conjugate gradient method [J].
Benzi, M ;
Meyer, CD ;
Tuma, M .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1996, 17 (05) :1135-1149
[4]  
Kharchenko SA, 2001, NUMER LINEAR ALGEBR, V8, P165, DOI 10.1002/1099-1506(200104/05)8:3<165::AID-NLA235>3.0.CO
[5]  
2-9
[6]   FACTORIZED SPARSE APPROXIMATE INVERSE PRECONDITIONINGS .1. THEORY [J].
KOLOTILINA, LY ;
YEREMIN, AY .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1993, 14 (01) :45-58
[7]   FACTORIZED SPARSE APPROXIMATE INVERSE PRECONDITIONING .2. SOLUTION OF 3D FE SYSTEMS ON MASSIVELY-PARALLEL COMPUTERS [J].
KOLOTILINA, LY ;
YEREMIN, AY .
INTERNATIONAL JOURNAL OF HIGH SPEED COMPUTING, 1995, 7 (02) :191-215
[8]  
KOLOTILINA LY, 1998, ZAPISKI NAUCHNYKH SE, V248, P17
[9]  
Saad Y., 1996, Iterative Methods for Sparse Linear Systems