Time Series Forecasting of Bitcoin Price Based on Autoregressive Integrated Moving Average and Machine Learning Approaches

被引:13
|
作者
Khedmati, M. [1 ]
Seifi, F. [1 ]
Azizib, M. J. [2 ]
机构
[1] Sharif Univ Technol, Dept Ind Engn, Tehran, Iran
[2] Univ Southern Calif, Daniel J Epstein Dept Ind & Syst Engn, Los Angeles, CA 90007 USA
来源
INTERNATIONAL JOURNAL OF ENGINEERING | 2020年 / 33卷 / 07期
关键词
Time Series Forecasting; Machine Learning; Bitcoin; Multivariate Models; NEURAL-NETWORK; WIND-SPEED; PREDICTION; SIMULATION; REGRESSION; MODELS; ARIMA;
D O I
10.5829/ije.2020.33.07a.16
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Bitcoin as the current leader in cryptocurrencies is a new asset class receiving significant attention in the financial and investment community and presents an interesting time series prediction problem. In this paper, some forecasting models based on classical like ARIMA and machine learning approaches including Kriging, Artificial Neural Network (ANN), Bayesian method, Support Vector Machine (SVM) and Random Forest (RF) are proposed and analyzed for modelling and forecasting the Bitcoin price. While some of the proposed models are univariate, the other models are multivariate and as a result, the maximum, minimum and the opening daily price of Bitcoin are also used in these models. The proposed models are applied on the Bitcoin price from December 18, 2019 to March 1, 2020 and their performances are compared in terms of the performance measures of RMSE and MAPE by Diebold-Mariano statistical test. Based on RMSE and MAPE measures, the results show that SVM provides the best performance among all the models. In addition, ARIMA and Bayesian approaches outperform other univariate models where they provide smaller values for RMSE and MAPE.
引用
收藏
页码:1293 / 1303
页数:11
相关论文
共 50 条
  • [1] Forecasting time series using a methodology based on autoregressive integrated moving average and genetic programming
    Lee, Yi-Shian
    Tong, Lee-Ing
    KNOWLEDGE-BASED SYSTEMS, 2011, 24 (01) : 66 - 72
  • [2] Research on Stock Price Time Series Prediction Based on Deep Learning and Autoregressive Integrated Moving Average
    Xiao, Daiyou
    Su, Jinxia
    SCIENTIFIC PROGRAMMING, 2022, 2022
  • [3] Bitcoin price prediction based on other cryptocurrencies using machine learning and time series analysis
    Maleki, N.
    Nikoubin, A.
    Rabbani, M.
    Zeinali, Y.
    SCIENTIA IRANICA, 2023, 30 (01) : 285 - 301
  • [4] Forecasting financial time series using a methodology based on autoregressive integrated moving average and Taylor expansion
    Zhang, Guisheng
    Zhang, Xindong
    Feng, Hongyinping
    EXPERT SYSTEMS, 2016, 33 (05) : 501 - 516
  • [5] A Model of Oil Price Forecasting based on Autoregressive and Moving Average
    Mo, Zhou
    Tao, Han
    2016 INTERNATIONAL CONFERENCE ON ROBOTS & INTELLIGENT SYSTEM (ICRIS), 2016, : 22 - 25
  • [6] Bitcoin Price Forecasting Using Time Series Analysis
    Roy, Shaily
    Nanjiba, Samiha
    Chakrabarty, Amitabha
    2018 21ST INTERNATIONAL CONFERENCE OF COMPUTER AND INFORMATION TECHNOLOGY (ICCIT), 2018,
  • [7] Autoregressive integrated moving average time series model for forecasting air pollution in Nanded city, Maharashtra, India
    Kulkarni G.E.
    Muley A.A.
    Deshmukh N.K.
    Bhalchandra P.U.
    Modeling Earth Systems and Environment, 2018, 4 (4) : 1435 - 1444
  • [8] Prediction of Raw Material Price Using Autoregressive Integrated Moving Average
    Hankla, Nutthaya
    Boonsothonsatit, Ganda
    2020 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT (IEEE IEEM), 2020, : 220 - 224
  • [9] Using Autoregressive Integrated Moving Average (ARIMA) for Prediction of Time Series Data
    Borkin, Dmitrii
    Nemeth, Martin
    Nemethova, Andrea
    INTELLIGENT SYSTEMS APPLICATIONS IN SOFTWARE ENGINEERING, VOL 1, 2019, 1046 : 470 - 476
  • [10] Fishery Landing Forecasting Using Wavelet-Based Autoregressive Integrated Moving Average Models
    Shabri, Ani
    Samsudin, Ruhaidah
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015