Fixed-time Synchronization of Fractional-order Hopfield Neural Networks

被引:4
作者
Mei, Xu [1 ]
Ding, Yucai [1 ]
机构
[1] Southwest Univ Sci & Technol, Sch Sci, Mianyang 621010, Sichuan, Peoples R China
关键词
Feedback controller; fixed-time synchronization; fractional order; Hopfield neural networks; SLIDING-MODE CONTROL; ROBUST STABILITY; SYSTEMS; STABILIZATION;
D O I
10.1007/s12555-021-0529-7
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper investigates the fixed-time synchronization of fractional-order Hopfield neural networks (FHNNs). The aim of this paper is to design a state-feedback controller to make the synchronization error convergent to zero within bounded time. Based on the Lyapunov function and fractional calculus theory, we derived some criteria of synchronization for delay-free FHNNs and delayed FHNNs, respectively. At the same time, the upper bound of settling time for synchronization are given. Numerical simulations demonstrate the effectiveness of the theoretical analysis.
引用
收藏
页码:3584 / 3591
页数:8
相关论文
共 37 条
[1]   Design of a chatter-free terminal sliding mode controller for nonlinear fractional-order dynamical systems [J].
Aghababa, Mohammad Pourmahmood .
INTERNATIONAL JOURNAL OF CONTROL, 2013, 86 (10) :1744-1756
[2]   Nonsingular terminal sliding-mode control of nonlinear planar systems with global fixed-time stability guarantees [J].
Corradini, Maria Letizia ;
Cristofaro, Andrea .
AUTOMATICA, 2018, 95 :561-565
[3]   Fixed-time synchronization of quaternion-valued neural networks [J].
Deng, Hui ;
Bao, Haibo .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 527
[4]   Controlling hyperchaos and periodic synchronization in DOPO with parameter modulated by an external periodic signal [J].
Feng, Xiu-Qin ;
Shen, Ke .
CHAOS SOLITONS & FRACTALS, 2008, 35 (03) :506-511
[5]   Influence of discretization step on positivity of a certain class of two-dimensional continuous-discrete fractional linear systems [J].
Ghezzar, Mohammed Amine ;
Bouagada, Djillali ;
Chadli, Mohammed .
IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2018, 35 (03) :845-860
[6]  
Hardy G. H., 1934, Inequalities
[7]  
Hayman S., 1999, IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339), P4438, DOI 10.1109/IJCNN.1999.830886
[8]   Pattern recognition via synchronization in phase-locked loop neural networks [J].
Hoppensteadt, FC ;
Izhikevich, EM .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2000, 11 (03) :734-738
[9]   Fixed-time stability of dynamical systems and fixed-time synchronization of coupled discontinuous neural networks [J].
Hu, Cheng ;
Yu, Juan ;
Chen, Zhanheng ;
Jiang, Haijun ;
Huang, Tingwen .
NEURAL NETWORKS, 2017, 89 :74-83
[10]   Robust fixed-time sliding mode control for fractional-order nonlinear hydro-turbine governing system [J].
Huang, Sunhua ;
Zhou, Bin ;
Bu, Siqi ;
Li, Canbing ;
Zhang, Cong ;
Wang, Huaizhi ;
Wang, Tao .
RENEWABLE ENERGY, 2019, 139 :447-458