Phase-space noncommutative quantum cosmology

被引:101
作者
Bastos, Catarina [1 ]
Bertolami, Orfeu [1 ]
Dias, Nuno Costa [2 ,3 ]
Pratax, Joao Nuno [2 ,3 ]
机构
[1] Inst Super Tecn, Dept Fis, P-1049001 Lisbon, Portugal
[2] Univ Lusofona Humanidades & Tecnol, Dept Matemat, P-1749024 Lisbon, Portugal
[3] UL, Grp Fis Matemat, P-1649003 Lisbon, Portugal
来源
PHYSICAL REVIEW D | 2008年 / 78卷 / 02期
关键词
D O I
10.1103/PhysRevD.78.023516
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a phase-space noncommutative extension of quantum cosmology and study the Kantowski-Sachs cosmological model requiring that the two scale factors of the Kantowski-Sachs metric, the coordinates of the system, and their conjugate canonical momenta do not commute. Through the Arnowitt-Deser-Misner formalism, we obtain the Wheeler-DeWitt (WDW) equation for the noncommutative system. The Seiberg-Witten map is used to transform the noncommutative equation into a commutative one, i.e. into an equation with commutative variables, which depend on the noncommutative parameters theta and eta. Numerical solutions are found both for the classical and the quantum formulations of the system. These solutions are used to characterize the dynamics and the state of the universe. From the classical solutions we obtain the behavior of quantities such as the volume expansion, the shear, and the characteristic volume. However, the analysis of these quantities does not lead to any restriction on the value of the noncommutative parameters theta and eta. On the other hand, for the quantum system, one can obtain, via the numerical solution of the WDW equation, the wave function of the universe for commutative as well as for the noncommutative models. Interestingly, we find that the existence of suitable solutions of the WDW equation imposes bounds on the values of the noncommutative parameters. Moreover, the noncommutativity in the momenta leads to damping of the wave function, implying that this noncommutativity can be of relevance for the selection of possible initial states of the early universe.
引用
收藏
页数:10
相关论文
共 34 条
[1]   A simple signal of noncommutative space [J].
Acatrinei, CS .
MODERN PHYSICS LETTERS A, 2005, 20 (19) :1437-1441
[2]  
[Anonymous], 1975, Homogeneous Relativistic Cosmologies. Princeton Series in Physics
[3]   Noncommutative geometry and cosmology [J].
Barbosa, GD ;
Pinto-Neto, N .
PHYSICAL REVIEW D, 2004, 70 (10) :103512-1
[4]   Deformation quantization of noncommutative quantum mechanics and dissipation [J].
Bastos, C. ;
Bertolami, O. ;
Dias, N. C. ;
Prata, J. N. .
THIRD INTERNATIONAL WORKSHOP DICE2006 - QUANTUM MECHANICS BETWEEN DECOHERENCE AND DETERMINISM: NEW ASPECTS FROM PARTICLE PHYSICS TO COSMOLOGY - CONTRIBUTED PAPERS, 2007, 67
[5]  
BASTOS C, UNPUB
[6]   Weyl-Wigner formulation of noncommutative quantum mechanics [J].
Bastos, Catarina ;
Bertolami, Orfeu ;
Dias, Nuno Costa ;
Prata, Joao Nuno .
JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (07)
[7]  
BELISSARD J, 1986, LECT NOTE PHYS, V257, P99
[8]  
BELISSARD J, ARXIVCONDMAT9301005
[9]   Noncommutative gravitational quantum well -: art. no. 025010 [J].
Bertolami, O ;
Rosa, JG ;
de Aragao, CML ;
Castorina, P ;
Zappalà, D .
PHYSICAL REVIEW D, 2005, 72 (02) :1-9
[10]   Scaling of variables and the relation between noncommutative parameters in noncommutative quantum mechanics [J].
Bertolami, O ;
Rosa, JG ;
de Aragao, CML ;
Castorina, P ;
Zappalà, D .
MODERN PHYSICS LETTERS A, 2006, 21 (10) :795-802