Advancements and recent trends in Emotion Recognition using facial image analysis and machine learning models

被引:0
|
作者
Kundu, Tuhin [1 ]
Saravanan, Chandran [2 ]
机构
[1] Jalpaiguri Govt Engn Coll, Dept Comp Sci & Engn, Jalpaiguri, W Bengal, India
[2] Natl Inst Technol, Dept Comp Sci & Engn, Durgapur, W Bengal, India
来源
2017 INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS, COMMUNICATION, COMPUTER, AND OPTIMIZATION TECHNIQUES (ICEECCOT) | 2017年
关键词
Artificial Neural Networks; Emotion Recognition; Facial Analysis; Oriented Fast and Rotated BRIEF; Pattern Classification; Support Vector Machine; EXPRESSIONS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As the demand for systems with human computer interaction grows, automated systems with human gesture and emotion recognition capabilities are the need of the hour. Emotions are understood by textual, vocal, and verbal expression data. Facial imagery also provides a constructive option to interpret and analyse human emotional issues. This paper describes the recent advancements in methods and techniques used to gauge the five primary emotions or moods frequently captured on images containing the human face: surprise, happiness, disgust, normality, drowsiness, through automated machinery. Looking at the recent developments in facial expression recognition techniques, the focus is on artificial neural networks and Support Vector Machine (SVM) in emotion classification. The technique first analyses the information conveyed by the facial regions of the eye and mouth into a merged new image and using it as an input to a feed forward neural network trained by back propagation. The second method showcases the use of Oriented Fast and Rotated (ORB) on a single frame of imagery to extract texture information, and the classification is completed using SVM. The special case of drowsiness detection systems using facial imagery by pattern classification, as automated drowsiness detection promises to play a revolutionary role in preventing road fatalities due to lethargic symptoms in drivers is also discussed.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 50 条
  • [1] Ensemble of Machine Learning Models for an Improved Facial Emotion Recognition
    Pulido-Castro, Sergio
    Palacios-Quecan, Nubia
    Ballen-Cardenas, Michelle P.
    Cancino-Suarez, Sandra
    Rizo-Arevalo, Alejandra
    Lopez Lopez, Juan M.
    2021 IEEE URUCON, 2021, : 512 - 516
  • [2] Facial Region Segmentation Based Emotion Recognition Using Extreme Learning Machine
    Islam, Bayezid
    Mahmud, Firoz
    Hossain, Arfat
    2018 INTERNATIONAL CONFERENCE ON ADVANCEMENT IN ELECTRICAL AND ELECTRONIC ENGINEERING (ICAEEE), 2018,
  • [3] Machine Learning-Driven Emotion Recognition Through Facial Landmark Analysis
    Akhilesh Kumar
    Awadhesh Kumar
    Sumit Gupta
    SN Computer Science, 6 (2)
  • [4] Speech based Emotion Recognition using Machine Learning
    Deshmukh, Girija
    Gaonkar, Apurva
    Golwalkar, Gauri
    Kulkarni, Sukanya
    PROCEEDINGS OF THE 2019 3RD INTERNATIONAL CONFERENCE ON COMPUTING METHODOLOGIES AND COMMUNICATION (ICCMC 2019), 2019, : 812 - 817
  • [5] Facial Emotion Recognition System through Machine Learning approach
    Deshmukh, Renuka S.
    Jagtap, Vandana
    Paygude, Shilpa
    2017 INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS), 2017, : 272 - 277
  • [6] Emotion Recognition System via Facial Expressions and Speech Using Machine Learning and Deep Learning Techniques
    Chaudhari A.
    Bhatt C.
    Nguyen T.T.
    Patel N.
    Chavda K.
    Sarda K.
    SN Computer Science, 4 (4)
  • [7] Facial Expression Analysis for Emotion Recognition Using Kernel Methods and Statistical Models
    Garcia, Hernan F.
    Torres, Cristian A.
    Marin Hurtado, Jorge Ivan
    2014 XIX SYMPOSIUM ON IMAGE, SIGNAL PROCESSING AND ARTIFICIAL VISION (STSIVA), 2014,
  • [8] Acquisition and Analysis of Facial Electromyographic Signals for Emotion Recognition
    Kolodziej, Marcin
    Majkowski, Andrzej
    Jurczak, Marcin
    SENSORS, 2024, 24 (15)
  • [9] Emotion Recognition in Education: A Bibliometric Analysis of Recent Trends and Technologies
    Kaushik, Siya
    Dhiman, Anusha
    Sharma, Chetna
    Bhatia, Aastha
    Sharma, Gouri
    2ND INTERNATIONAL CONFERENCE ON SUSTAINABLE COMPUTING AND SMART SYSTEMS, ICSCSS 2024, 2024, : 1154 - 1160
  • [10] Facial emotion recognition using geometrical features based deep learning techniques
    Iqbal, J. L. Mazher
    Kumar, M. Senthil
    Mishra, Geetishree
    Asha, G. R.
    Saritha, A. N.
    Karthik, A.
    BonthuKotaiah, N.
    INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 2023, 18 (04)