The 3D multi-layered solvable six-vertex model: The phase diagram

被引:2
作者
Popkov, V [1 ]
Nienhuis, B [1 ]
机构
[1] UNIV AMSTERDAM,INST THEORET PHYS,NL-1018 XE AMSTERDAM,NETHERLANDS
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1997年 / 30卷 / 01期
关键词
D O I
10.1088/0305-4470/30/1/008
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An anisotropic statistical model on a cubic lattice consisting of locally interacting six-vertex planes solvable via Bethe ansatz (BA), is studied. Symmetries of BA lead to an infinite hierarchy of possible phases, which is further restricted by numerical simulations. The model is solved for an arbitrary value of the interlayer coupling constant. Resulting is the phase diagram in general three-parameter space. Two new phases of chiral (spiral) character and a new first-order phase transition appear due to the interplane interaction. Exact mapping onto the models with some inhomogeneous sets of interlayer coupling constants is established.
引用
收藏
页码:99 / 116
页数:18
相关论文
共 12 条
[1]  
Baxter RJ., 1982, Exactly solved models in statistical mechanics
[2]   NEW SOLVABLE LATTICE MODELS IN 3 DIMENSIONS [J].
BAZHANOV, VV ;
BAXTER, RJ .
JOURNAL OF STATISTICAL PHYSICS, 1992, 69 (3-4) :453-485
[3]   A new solvable 3D model of statistical mechanics: The free-fermion solution [J].
Borovick, AE ;
Kulinich, SI ;
Popkov, VY ;
Strzhemechny, YM .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1996, 10 (04) :443-453
[4]  
LIEB EH, 1972, PHASE TRANSITIONS CR, V1, P436
[5]   NEW SERIES OF 3D-LATTICE INTEGRABLE MODELS [J].
MANGAZEEV, VV ;
SERGEEV, SM ;
STROGANOV, YG .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1994, 9 (31) :5517-5530
[6]   Finite-size scaling and the toroidal partition function of the critical asymmetric six-vertex model [J].
Noh, JD ;
Kim, DC .
PHYSICAL REVIEW E, 1996, 53 (04) :3225-3239
[7]  
POKROVSKII VL, 1980, ZH EKSP TEOR FIZ, V51, P134
[8]   ANISOTROPIC EXTENSION OF 2D SOLVABLE MODELS IN STATISTICAL-MECHANICS TO 3D [J].
POPKOV, V .
PHYSICS LETTERS A, 1994, 192 (5-6) :337-344
[9]  
POPKOV V, 1996, 96020 SNUTP
[10]  
Takhtadzhan L.A., 1979, Russ. Math. Surv., V34, P11, DOI [DOI 10.1070/RM1979V034N05ABEH003909, 10.1070/RM1979v034n05ABEH003909]