N/P Codoped Porous Carbon-Coated Graphene Nanohybrid as a High-Performance Electrode for Supercapacitors

被引:42
|
作者
Zheng, Lin [1 ]
Xia, Kaisheng [1 ,2 ]
Han, Bo [2 ]
Zhou, Chenggang [1 ,2 ]
Gao, Qiang [2 ]
Wang, Hongquan [1 ]
Pu, Song [1 ]
Wu, Jinping [2 ]
机构
[1] China Univ Geosci, Engn Res Ctr Nanogeomat, Minist Educ, Fac Mat Sci & Chem, 388 Lumo Rd, Wuhan 430074, Peoples R China
[2] China Univ Geosci, Fac Mat Sci & Chem, 388 Lumo Rd, Wuhan 430074, Peoples R China
来源
ACS APPLIED NANO MATERIALS | 2018年 / 1卷 / 12期
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
nitrogen/phosphorus codoping; graphene; nanohybrid; carbon electrodes; supercapacitors; energy density; ORDERED MESOPOROUS CARBON; CO-DOPED GRAPHENE; VOLUMETRIC CAPACITANCE; HYDROTHERMAL SYNTHESIS; FACILE SYNTHESIS; SURFACE-AREA; NITROGEN; PHOSPHORUS; COMPOSITES; ACTIVATION;
D O I
10.1021/acsanm.8b01552
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Carbon nanomaterials have shown great promise for supercapacitors but are usually limited to their unsatisfactory energy densities. To address this issue, it requires rational design and tuning of the carbon composition, texture, and microstructure. Herein, we present a nanohybrid strategy for the preparation of nitrogen/phosphorus codoped porous carbon-coated graphene (KNPG) by conjunction of carbonization and activation of phytic acid on the graphene oxide in the presence of ethylenediamine. The as-synthesized KNPG is endowed with a unique three-dimensional (3D) nanohybrid architecture consisting of graphene layers sandwiched by porous carbon nanosheets, a hierarchically micro-/mesoporous structure, a high specific surface area (up to 596 m(2) g(-1)), and an efficient N/P codoping (3.6 atom % for N and 0.3 atom % for P). As a supercapacitor electrode, the KNPG shows a gravimetric capacitance of 201 F (200 F cm-3) at 0.5 A g(-1), and an excellent rate capability with a capacitance retention ratio of 75% at 20 A g(-1). Moreover, the obtained symmetric supercapacitor in 6 M KOH delivers a high gravimetric energy density of 9.10 W h kg(-1), a large volumetric energy density of 9.07 W h L-1, and a superior cycle stability of 84.6% retention after 20 000 cycles. The present study opens up new opportunities to couple graphene and N/P codoped carbon for high-performance supercapacitors.
引用
收藏
页码:6742 / 6751
页数:19
相关论文
共 50 条
  • [41] N/S co-doped coal-based porous carbon spheres as electrode materials for high performance supercapacitors
    Lv, Yan
    Chen, Jingjing
    Jia, Wei
    Wu, Xueyan
    Guo, Jixi
    Ding, Lili
    Jia, Dianzeng
    Tong, Fenglian
    RSC ADVANCES, 2020, 10 (19) : 11033 - 11038
  • [42] Carbon-coated MoO2 nanoclusters anchored on RGO sheets as high-performance electrodes for symmetric supercapacitors
    Si, Haochen
    Sun, Li
    Zhang, Yu
    Zhang, Yuanxing
    Bai, Liqi
    Zhang, Yihe
    DALTON TRANSACTIONS, 2019, 48 (01) : 285 - 295
  • [43] Rambutan-like hierarchically porous carbon microsphere as electrode material for high-performance supercapacitors
    Shao, Chunfeng
    Qiu, Shujun
    Wu, Guiming
    Cui, Boyang
    Chu, Hailiang
    Zou, Yongjin
    Xiang, Cuili
    Xu, Fen
    Sun, Lixian
    CARBON ENERGY, 2021, 3 (02) : 361 - 374
  • [44] Tailoring Hierarchically Porous Nitrogen-, Sulfur-Codoped Carbon for High-Performance Supercapacitors and Oxygen Reduction
    Lu, Huihang
    Yang, Chao
    Chen, Jing
    Li, Jun
    Jin, Huile
    Wang, Jichang
    Wang, Shun
    SMALL, 2020, 16 (17)
  • [45] Constructed nitrogen and sulfur codoped multilevel porous carbon from lignin for high-performance supercapacitors
    Tian, Jingyang
    Liu, Chunyuan
    Lin, Chong
    Ma, Mingyang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 789 : 435 - 442
  • [46] High-performance supercapacitors based on hierarchically porous carbons with a three-dimensional conductive network structure
    Zou, Jizhao
    Tu, Wenxuan
    Zeng, Shao-Zhong
    Yao, Yuechao
    Zhang, Qi
    Wu, Hongliang
    Lan, Tongbin
    Liu, Shiyu
    Zeng, Xierong
    DALTON TRANSACTIONS, 2019, 48 (16) : 5271 - 5284
  • [47] N,P,S-Codoped Hierarchically Porous Carbon Spheres with Well-Balanced Gravimetric/Volumetric Capacitance for Supercapacitors
    Yan, Lijun
    Li, Di
    Yan, Tingting
    Chen, Guorong
    Shi, Liyi
    An, Zhongxun
    Zhang, Dengsong
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (04): : 5265 - 5272
  • [48] A simple approach of constructing sulfur-containing porous carbon nanotubes for high-performance supercapacitors
    Liu, Wei
    Tang, Yakun
    Sun, Zhipeng
    Gao, Shasha
    Ma, Junhong
    Liu, Lang
    CARBON, 2017, 115 : 754 - 762
  • [49] N/P co-doped hierarchical porous carbon materials for superior performance supercapacitors
    Chen, Jing
    Wei, Huanming
    Chen, Haijun
    Yao, Wenhao
    Lin, Hualin
    Han, Sheng
    ELECTROCHIMICA ACTA, 2018, 271 : 49 - 57
  • [50] Metal-organic framework derived high-content N, P and O-codoped Co/C composites as electrode materials for high performance supercapacitors
    Shi, Xiaoyan
    Yu, Jinchao
    Huang, Jingle
    Chen, Bin
    Fang, Lujun
    Shao, Lianyi
    Sun, Zhipeng
    JOURNAL OF POWER SOURCES, 2020, 467