N/P Codoped Porous Carbon-Coated Graphene Nanohybrid as a High-Performance Electrode for Supercapacitors

被引:42
|
作者
Zheng, Lin [1 ]
Xia, Kaisheng [1 ,2 ]
Han, Bo [2 ]
Zhou, Chenggang [1 ,2 ]
Gao, Qiang [2 ]
Wang, Hongquan [1 ]
Pu, Song [1 ]
Wu, Jinping [2 ]
机构
[1] China Univ Geosci, Engn Res Ctr Nanogeomat, Minist Educ, Fac Mat Sci & Chem, 388 Lumo Rd, Wuhan 430074, Peoples R China
[2] China Univ Geosci, Fac Mat Sci & Chem, 388 Lumo Rd, Wuhan 430074, Peoples R China
来源
ACS APPLIED NANO MATERIALS | 2018年 / 1卷 / 12期
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
nitrogen/phosphorus codoping; graphene; nanohybrid; carbon electrodes; supercapacitors; energy density; ORDERED MESOPOROUS CARBON; CO-DOPED GRAPHENE; VOLUMETRIC CAPACITANCE; HYDROTHERMAL SYNTHESIS; FACILE SYNTHESIS; SURFACE-AREA; NITROGEN; PHOSPHORUS; COMPOSITES; ACTIVATION;
D O I
10.1021/acsanm.8b01552
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Carbon nanomaterials have shown great promise for supercapacitors but are usually limited to their unsatisfactory energy densities. To address this issue, it requires rational design and tuning of the carbon composition, texture, and microstructure. Herein, we present a nanohybrid strategy for the preparation of nitrogen/phosphorus codoped porous carbon-coated graphene (KNPG) by conjunction of carbonization and activation of phytic acid on the graphene oxide in the presence of ethylenediamine. The as-synthesized KNPG is endowed with a unique three-dimensional (3D) nanohybrid architecture consisting of graphene layers sandwiched by porous carbon nanosheets, a hierarchically micro-/mesoporous structure, a high specific surface area (up to 596 m(2) g(-1)), and an efficient N/P codoping (3.6 atom % for N and 0.3 atom % for P). As a supercapacitor electrode, the KNPG shows a gravimetric capacitance of 201 F (200 F cm-3) at 0.5 A g(-1), and an excellent rate capability with a capacitance retention ratio of 75% at 20 A g(-1). Moreover, the obtained symmetric supercapacitor in 6 M KOH delivers a high gravimetric energy density of 9.10 W h kg(-1), a large volumetric energy density of 9.07 W h L-1, and a superior cycle stability of 84.6% retention after 20 000 cycles. The present study opens up new opportunities to couple graphene and N/P codoped carbon for high-performance supercapacitors.
引用
收藏
页码:6742 / 6751
页数:19
相关论文
共 50 条
  • [31] Assembly of porous NiO nanowires on carbon cloth as a flexible electrode for high-performance supercapacitors
    Peng, Yi-Hang
    Guo, Mei-Xia
    Shao, Fu
    Liu, Si
    Zhu, Quan
    Bian, Shao-Wei
    RSC ADVANCES, 2016, 6 (78): : 74874 - 74877
  • [32] A High-Performance Electrode Based on Reduced Graphene Oxide/Lignosulfonate/Carbon Microspheres Film for Flexible Supercapacitors
    Ren, Ruquan
    Zhong, Yan
    Fan, Yongming
    BIORESOURCES, 2022, 17 (01) : 1729 - 1744
  • [33] Synthesis of carbon-coated graphene electrodes and their electrochemical performance
    Kim, Ki-Seok
    Park, Soo-Jin
    ELECTROCHIMICA ACTA, 2011, 56 (18) : 6547 - 6553
  • [34] N, P dual-doped hollow carbon spheres for high-performance supercapacitors
    Zhu, Cheng
    Wang, Miao
    Yang, Guang
    Lu, Ting
    Pan, Likun
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2017, 21 (12) : 3631 - 3640
  • [35] Facile and controllable synthesis of N/P co-doped graphene for high-performance supercapacitors
    Xia, Kaisheng
    Huang, Zhiyuan
    Zheng, Lin
    Han, Bo
    Gao, Qiang
    Zhou, Chenggang
    Wang, Hongquan
    Wu, Jinping
    JOURNAL OF POWER SOURCES, 2017, 365 : 380 - 388
  • [36] Insulation board-derived N/O self-doped porous carbon as an electrode material for high-performance symmetric supercapacitors
    Su, Yingjie
    Lu, Zhenjie
    Cheng, Junxia
    Zhao, Xuefei
    Chen, Xingxing
    Gao, Lijuan
    NEW JOURNAL OF CHEMISTRY, 2021, 45 (37) : 17503 - 17512
  • [37] Easily Prepared Wood-Derived Hierarchically Porous Carbon for High-Performance Supercapacitors
    Zhang, Yali
    Liu, Yifeng
    Wu, Xiaoliang
    CHEMISTRYSELECT, 2024, 9 (16):
  • [38] AC/Ni(OH)2 as a porous electrode material for supercapacitors with high-performance
    Qin, Zhao
    Liu, Jie
    Sun, Biemin
    Zou, Hanjun
    Chen, Lingyun
    Xu, Yanqin
    Cao, Yuan
    Chen, Changguo
    ELECTROCHIMICA ACTA, 2022, 435
  • [39] A hierarchical porous P-doped carbon electrode through hydrothermal carbonization of pomelo valves for high-performance supercapacitors
    Huang, Jing
    Chen, Jie
    Yin, Zhenyao
    Wu, Jinggao
    NANOSCALE ADVANCES, 2020, 2 (08): : 3284 - 3291
  • [40] Peanut shell waste derived porous carbon for high-performance supercapacitors
    Liang, Ke
    Chen, Yanli
    Wang, Shengxu
    Wang, Dan
    Wang, Wenchang
    Jia, Shuyong
    Mitsuzakic, Naotoshi
    Chen, Zhidong
    JOURNAL OF ENERGY STORAGE, 2023, 70