N/P Codoped Porous Carbon-Coated Graphene Nanohybrid as a High-Performance Electrode for Supercapacitors

被引:42
|
作者
Zheng, Lin [1 ]
Xia, Kaisheng [1 ,2 ]
Han, Bo [2 ]
Zhou, Chenggang [1 ,2 ]
Gao, Qiang [2 ]
Wang, Hongquan [1 ]
Pu, Song [1 ]
Wu, Jinping [2 ]
机构
[1] China Univ Geosci, Engn Res Ctr Nanogeomat, Minist Educ, Fac Mat Sci & Chem, 388 Lumo Rd, Wuhan 430074, Peoples R China
[2] China Univ Geosci, Fac Mat Sci & Chem, 388 Lumo Rd, Wuhan 430074, Peoples R China
来源
ACS APPLIED NANO MATERIALS | 2018年 / 1卷 / 12期
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
nitrogen/phosphorus codoping; graphene; nanohybrid; carbon electrodes; supercapacitors; energy density; ORDERED MESOPOROUS CARBON; CO-DOPED GRAPHENE; VOLUMETRIC CAPACITANCE; HYDROTHERMAL SYNTHESIS; FACILE SYNTHESIS; SURFACE-AREA; NITROGEN; PHOSPHORUS; COMPOSITES; ACTIVATION;
D O I
10.1021/acsanm.8b01552
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Carbon nanomaterials have shown great promise for supercapacitors but are usually limited to their unsatisfactory energy densities. To address this issue, it requires rational design and tuning of the carbon composition, texture, and microstructure. Herein, we present a nanohybrid strategy for the preparation of nitrogen/phosphorus codoped porous carbon-coated graphene (KNPG) by conjunction of carbonization and activation of phytic acid on the graphene oxide in the presence of ethylenediamine. The as-synthesized KNPG is endowed with a unique three-dimensional (3D) nanohybrid architecture consisting of graphene layers sandwiched by porous carbon nanosheets, a hierarchically micro-/mesoporous structure, a high specific surface area (up to 596 m(2) g(-1)), and an efficient N/P codoping (3.6 atom % for N and 0.3 atom % for P). As a supercapacitor electrode, the KNPG shows a gravimetric capacitance of 201 F (200 F cm-3) at 0.5 A g(-1), and an excellent rate capability with a capacitance retention ratio of 75% at 20 A g(-1). Moreover, the obtained symmetric supercapacitor in 6 M KOH delivers a high gravimetric energy density of 9.10 W h kg(-1), a large volumetric energy density of 9.07 W h L-1, and a superior cycle stability of 84.6% retention after 20 000 cycles. The present study opens up new opportunities to couple graphene and N/P codoped carbon for high-performance supercapacitors.
引用
收藏
页码:6742 / 6751
页数:19
相关论文
共 50 条
  • [21] Fabricating sustainable lignin-derived porous carbon as electrode for high-performance supercapacitors
    Liu, Wei
    Li, Zhikun
    Sang, Ranran
    Li, Jinsong
    Song, Xueping
    Hou, Qingxi
    FRONTIERS OF CHEMICAL SCIENCE AND ENGINEERING, 2023, 17 (08) : 1065 - 1074
  • [22] Porous Hard Carbon as High-Performance Electrode Material for Supercapacitors: Towards Sustainable Approach
    Ragupathi, Veena
    Praneash, Rishi K. B.
    Panigrahi, Puspamitra
    Subramaniam, N. Ganapathi
    ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2022, 11 (04)
  • [23] Porous reduced graphene oxide paper as a binder-free electrode for high-performance supercapacitors
    Liu, Yu
    Ying, Yulong
    Mao, Yiyin
    Hua, Pan
    Peng, Xinsheng
    RSC ADVANCES, 2015, 5 (34) : 27175 - 27180
  • [24] Scalable preparation of hierarchical porous activated carbon/graphene composites for high-performance supercapacitors
    Huang, Yilun
    Shi, Yunkai
    Gong, Qianming
    Weng, Mouyi
    Li, Yuyao
    Gan, Jianning
    Wang, Dazhi
    Shao, Yang
    Zhao, Ming
    Zhuang, Daming
    Liang, Ji
    Pan, Feng
    Zhu, Hongwei
    Nan, Cewen
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (16) : 10058 - 10066
  • [25] A novel and facile synthesis approach for a porous carbon/graphene composite for high-performance supercapacitors
    Liu, Ting
    Zhang, Xuesha
    Liu, Kang
    Liu, Yanyan
    Liu, Mengjie
    Wu, Wenyu
    Gu, Yu
    Zhang, Ruijun
    NANOTECHNOLOGY, 2018, 29 (09)
  • [26] N-doped porous carbon network anchoring on hollow wooden carbon fibers for high-performance electrode materials in supercapacitors
    Zhang, Shuaijie
    Lu, Zhichao
    Li, Yaxuan
    Qiu, Zihan
    Bai, Yuanjuan
    Liu, Gonggang
    Xu, Laiqiang
    Liao, Yuanyuan
    Chang, Shanshan
    Hu, Jinbo
    BIOMASS CONVERSION AND BIOREFINERY, 2025, 15 (01) : 271 - 283
  • [27] N-doped porous carbon network anchoring on hollow wooden carbon fibers for high-performance electrode materials in supercapacitors
    Zhang, Shuaijie
    Lu, Zhichao
    Li, Yaxuan
    Qiu, Zihan
    Bai, Yuanjuan
    Liu, Gonggang
    Xu, Laiqiang
    Liao, Yuanyuan
    Chang, Shanshan
    Hu, Jinbo
    BIOMASS CONVERSION AND BIOREFINERY, 2025, 15 (01) : 271 - 283
  • [28] Design and Synthesis of N-Doped Carbon Skeleton Assembled by Carbon Nanotubes and Graphene as a High-Performance Electrode Material for Supercapacitors
    He, Fan
    Li, Kanshe
    Cong, Shaoling
    Yuan, Hua
    Wang, Xiaoqin
    Wu, Bohua
    Zhang, Runlan
    Chu, Jia
    Gong, Ming
    Xiong, Shanxin
    Wu, Yan
    Zhou, Anning
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (08) : 7731 - 7742
  • [29] Activated Porous Carbon Nanofibers for High-Performance Supercapacitors
    Islam, Moyinul
    Lu, Xing
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2019, 14 (04): : 3856 - 3870
  • [30] Porous wood carbon monolith for high-performance supercapacitors
    Liu, Mao-Cheng
    Kong, Ling-Bin
    Zhang, Peng
    Luo, Yong-Chun
    Kang, Long
    ELECTROCHIMICA ACTA, 2012, 60 : 443 - 448