Quasicircles and bounded turning circles modulo bi-Lipschitz maps

被引:15
作者
Herron, David A. [1 ]
Meyer, Daniel [2 ]
机构
[1] Univ Cincinnati, Dept Math, Cincinnati, OH 45221 USA
[2] Univ Helsinki, Dept Math & Stat, FIN-00014 Helsinki, Finland
基金
芬兰科学院;
关键词
Quasicircle; Jordan curve; bounded turning; doubling; ARCS;
D O I
10.4171/RMI/687
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a catalog, of snowflake type metric circles, that describes all metric quasicircles up to bi-Lipschitz equivalence. This is a metric space analog of a result due to Rohde. Our construction also works for all bounded turning metric circles; these need not be doubling. As a byproduct, we show that a metric quasicircle with Assouad dimension strictly less than two is bi-Lipschitz equivalent to a planar quasicircle.
引用
收藏
页码:603 / 630
页数:28
相关论文
共 22 条
[1]   QUASICONFORMAL REFLECTIONS [J].
AHLFORS, LV .
ACTA MATHEMATICA, 1963, 109 (3-4) :291-301
[2]  
[Anonymous], LECT ANAL METRIC SPA
[3]  
Assouad P., 1979, C. R. Acad. Sci. Paris Ser. A-B, V288, pA731
[4]   THE BOUNDARY CORRESPONDENCE UNDER QUASICON-FORMAL MAPPINGS [J].
BEURLING, A ;
AHLFORS, L .
ACTA MATHEMATICA, 1956, 96 (1-2) :125-142
[5]  
Bonk M, 2001, J REINE ANGEW MATH, V541, P117
[6]   INJECTIVITY OF LOCAL QUASI-ISOMETRIES [J].
GEHRING, FW .
COMMENTARII MATHEMATICI HELVETICI, 1982, 57 (02) :202-220
[7]  
Luukkainen J., 1998, J. Korean Math. Soc., V35, P23
[8]  
Menger K, 1930, MATH ANN, V103, P466, DOI 10.1007/BF01455705
[9]   BOUNDED TURNING CIRCLES ARE WEAK-QUASICIRCLES [J].
Meyer, Daniel .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (05) :1751-1761
[10]  
Nakki R., 1991, Expo. Math., V9, P3