Crystallization assisted self-assembly of semicrystalline block copolymers

被引:348
|
作者
He, Wei-Na [1 ]
Xu, Jun-Ting [1 ]
机构
[1] Zhejiang Univ, Dept Polymer Sci & Engn, MOE Key Lab Macromol Synth & Functionalizat, Hangzhou 310027, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Block copolymer; Self-assembly; Crystallization; CRYSTAL ORIENTATION CHANGES; OXIDE) DIBLOCK COPOLYMER; X-RAY-SCATTERING; DEPENDENT CONFORMATIONAL TRANSFORMATION; DIFFERENTIAL SCANNING CALORIMETRY; HETEROJUNCTION SOLAR-CELLS; FIELD-EFFECT MOBILITIES; THIN-FILM MORPHOLOGY; CONJUGATED ROD-COIL; TABLET-LIKE BLOCK;
D O I
10.1016/j.progpolymsci.2012.05.002
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The self-assembly of block copolymers (BCPs) in the presence of crystallization as the second driving force is reviewed, for BCPs in the bulk, thin films, single crystals and micelles. The crystallization of semicrystalline BCPs in the bulk is introduced briefly and the unique morphologies of semicrystalline BCPs at various levels due to crystallization are discussed. The thin film morphologies shown by crystalline BCPs are summarized in terms of the factors affecting the relative strengths of various driving forces. Special attention is paid to the thin film morphologies of functional BCPs containing crystalline poly(3-alkylthiophene) and perylene bisimide units. The single crystal morphologies of semicrystalline BCPs are also presented. Finally, the micellar morphologies of BCPs with a semicrystalline core are reviewed. The controlled and living growth of crystalline micelles, which is the unique characteristic of such micelle, is then discussed. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1350 / 1400
页数:51
相关论文
共 50 条
  • [21] Three Dimensional Assembly in Directed Self-assembly of Block Copolymers
    Segal-Peretz, Tamar
    Zhou, Chun
    Ren, Jiaxing
    Dazai, Takahiro
    Ocola, Leonidas E.
    Divan, Ralu N. S.
    Nealey, Paul F.
    JOURNAL OF PHOTOPOLYMER SCIENCE AND TECHNOLOGY, 2016, 29 (05) : 653 - 657
  • [22] Advances in square arrays through self-assembly and directed self-assembly of block copolymers
    Hardy, Christopher G.
    Tang, Chuanbing
    JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2013, 51 (01) : 2 - 15
  • [23] Concepts, fabrication methods and applications of living crystallization-driven self-assembly of block copolymers
    Ganda, Sylvia
    Stenzel, Martina H.
    PROGRESS IN POLYMER SCIENCE, 2020, 101
  • [24] Nanofiber micelles from the self-assembly of block copolymers
    Qian, Jieshu
    Zhang, Meng
    Manners, Ian
    Winnik, Mitchell A.
    TRENDS IN BIOTECHNOLOGY, 2010, 28 (02) : 84 - 92
  • [26] Correlating Self-Assembly of Block Copolymers for Their Application in Synthesis of Gold Nanoparticles
    Ray, Debes
    Aswal, Vinod Kumar
    Srivastava, Dinesh
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2011, 11 (03) : 1905 - 1913
  • [27] Double-hydrophilic block copolymers and their self-assembly
    Dou, HJ
    Kang, S
    PROGRESS IN CHEMISTRY, 2005, 17 (05) : 854 - 859
  • [28] On the Self-Assembly of Brush Block Copolymers in Thin Films
    Hong, Sung Woo
    Gu, Weiyin
    Huh, June
    Sveinbjornsson, Benjamin R.
    Jeong, Gajin
    Grubbs, Robert Howard
    Russell, Thomas P.
    ACS NANO, 2013, 7 (11) : 9684 - 9692
  • [29] Grain shapes and growth kinetics during self-assembly of block copolymers
    Chastek, TQ
    Lodge, TP
    JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2006, 44 (03) : 481 - 491
  • [30] Emerging trends in solution self-assembly of block copolymers
    Deng, Zhengyu
    Liu, Shiyong
    POLYMER, 2020, 207