Thermal conductivity enhancement of phase change materials with form-stable carbon bonded carbon fiber network

被引:97
|
作者
Jiang, Zhao [1 ]
Ouyang, Ting [1 ]
Yang, Yang [1 ]
Chen, Lei [1 ]
Fan, Xiaohua [1 ]
Chen, Yunbo [1 ]
Li, Weiwei [3 ]
Fei, Youqing [1 ,2 ]
机构
[1] Hunan Univ, Coll Mat Sci & Engn, Changsha 410082, Hunan, Peoples R China
[2] Hunan Univ, State Key Lab Adv Design & Mfg Vehicle Body, Changsha 410082, Hunan, Peoples R China
[3] Chinese Acad Sci, Suzhou Inst Nanotech & Nanobion, Suzhou 215123, Peoples R China
基金
中国国家自然科学基金;
关键词
Phase change materials; Bonded carbon fibers network; Form-stable; Thermal conductivity; ENERGY STORAGE CHARACTERISTICS; STEARIC-ACID; COMPOSITE; GRAPHITE; PCM; PERFORMANCE; PARAFFIN; TEXTURE; SYSTEM;
D O I
10.1016/j.matdes.2018.01.052
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Carbon bonded carbon fiber (CBCF) monoliths were prepared from graphite fibers with high thermal conductivity, to promote heat transfer and to stabilize the shape of phase change material (PCM). The CBCF monoliths with density from 0.09 to 039 g/cm(3) were filled with paraffin wax to form PCM composites. Due to the anisotropy of the CBCF material, the PCM composites had varied thermal conductivities with their directions. Results showed that the in-plane thermal conductivity of the PCM composites was markedly improved by 18 to 57 Limes over the pure wax, depending on the density of CBCF composites, while the oul-of-plane thermal conductivity was also increased by 37 to 5.5 Limes. In addition, the improvements in thermal conductivity showed almost linear relationship with the volume fraction of carbon fibers in the PCM composites. The charging time of the composites with the high CBCF density was reduced to one quarter of pure paraffin, while the discharging time was about one sixth. The apparent enthalpy of PCM composites was found to vary with the loadings of paraffin wax, by differential scanning calorimetry (DSC). After 40 cycles, the wax loadings in the PCM composites were retained at 56-70%. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:177 / 184
页数:8
相关论文
共 50 条
  • [21] Effect of Form-Stable Phase Change Particle Gradation on Thermal Conductivity of Concrete
    Zhang, Yichao
    Liang, Jiatong
    Li, Xuan
    Liu, Tao
    Liu, Min
    Wang, Yanhui
    Liu, Zhicheng
    JOM, 2025, 77 (02) : 784 - 792
  • [22] Form-stable phase change composites with high thermal conductivity and electrical insulation
    Zhang, Huaqing
    Zhang, Shixian
    Li, Chenjian
    Shi, Zhuqun
    Yang, Quanling
    Wang, Shan
    Xiong, Chuanxi
    JOURNAL OF ENERGY STORAGE, 2022, 52
  • [23] Evaluation of carbon based-supporting materials for developing form-stable organic phase change materials for thermal energy storage: A review
    Singh, P.
    Sharma, R. K.
    Khalid, M.
    Goyal, R.
    Sari, A.
    Tyagi, V. V.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2022, 246
  • [24] Form-Stable phase change composites with high thermal conductivity and enthalpy enabled by Graphene/Carbon nanotubes aerogel skeleton for thermal energy storage
    Guo, Junxia
    Han, Xu
    Ma, Shichao
    Sun, Ye
    Li, Chunlin
    Li, Ruiguang
    Li, Chengjie
    APPLIED THERMAL ENGINEERING, 2024, 255
  • [25] Thermal conductivity enhancement of carbon@ carbon nanotube arrays and bonded carbon nanotube network
    Samani, Majid Kabiri
    Lu, Congxiang
    Kong Qinyu
    Khosravian, Narjes
    Chen, George
    Tan, Chong Wei
    Rudquist, Per
    Tay, Beng Kang
    Liu, Johan
    MATERIALS RESEARCH EXPRESS, 2019, 6 (08):
  • [26] Form-Stable Phase Change Materials with Enhanced Thermal Conductivity Based on Binary Capric-Palmitic Acid and Graphite Carbon In Situ Modified Expanded Perlite
    Zhang, Xiaoguang
    Wang, Zekun
    Liu, Xianjie
    Shi, Tengteng
    Lin, Fankai
    Xu, Yunfei
    Chen, Guo
    Zhang, Wuri
    Huang, Zhaohui
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (09) : 9124 - 9132
  • [27] The form-stable phase change materials based on polyethylene glycol and functionalized carbon nanotubes for heat storage
    Feng, Lili
    Wang, Chongyun
    Song, Ping
    Wang, Haibo
    Zhang, Xiaoran
    APPLIED THERMAL ENGINEERING, 2015, 90 : 952 - 956
  • [28] Fibrous form-stable phase change materials with high thermal conductivity fabricated by interfacial polyelectrolyte complex spinning
    Fang, Hui
    Lin, Jialin
    Zhang, Lingjie
    Chen, Anlin
    Wu, Fangjuan
    Geng, Lihong
    Peng, Xiangfang
    CARBOHYDRATE POLYMERS, 2020, 249
  • [29] Form-stable phase change composites with high thermal conductivity and adjustable thermal management capacity
    Liao, Honghui
    Guo, Shengwei
    Liu, Yuan
    Wang, Qi
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2021, 221 (221)
  • [30] Effect of anisotropic thermal conductivity on thermal control performance of form-stable phase change material
    Huang, Yi-Huan
    Cheng, Wen-Long
    Han, Bing-Chuan
    INNOVATIVE SOLUTIONS FOR ENERGY TRANSITIONS, 2019, 158 : 5342 - 5348