The nilpotence order of the mod 2 Hecke operators

被引:20
作者
Nicolas, Jean-Louis [1 ]
Serre, Jean-Pierre [2 ]
机构
[1] Univ Lyon, CNRS, Inst Camille Jordan, F-69622 Villeurbanne, France
[2] Coll France, F-75231 Paris 05, France
关键词
D O I
10.1016/j.crma.2012.03.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Delta = Sigma(infinity)(m=0)q((2m+1)2) is an element of F-2 parallel to q parallel to be the reduction mod 2 of the Delta series. A modular form f modulo 2 of level 1 is a polynomial in Delta. If p is an odd prime, then the Hecke operator T-p transforms f in a modular form T-p(f) which is a polynomial in Delta whose degree is smaller than the degree of f, so that T-p is nilpotent. The order of nilpotence of f is defined as the smallest integer g = g(f) such that, for every family of g odd primes p(1), p(2), ... , p(g), the relation Tp(1) Tp(2) ... Tp(g) (f) = 0 holds. We show how one can compute explicitly g(f); if f is a polynomial of degree d in Delta, one finds that g(f) << d(1/2). (C) 2012 Academie des sciences. Publie par Elsevier Masson SAS. Tous droits reserves.
引用
收藏
页码:343 / 348
页数:6
相关论文
共 5 条
  • [1] EIGENVALUES OF HECKE OPERATORS ON SL (2,Z)
    HATADA, K
    [J]. MATHEMATISCHE ANNALEN, 1979, 239 (01) : 75 - 96
  • [2] Nicolas JL, 2008, CRM PROC & LECT NOTE, V46, P97
  • [3] Ono K., 2004, WEB MODULARITY ARITH, V102
  • [4] Serre J.-P., 1975, Astrisque, V24, P109
  • [5] Swinnerton-Dyer H.P.F., 1973, Springer Lect. Notes, V350, P1