Generalized fractal transforms and self-similar objects in cone metric spaces

被引:21
作者
Kunze, H. [2 ]
La Torre, D. [1 ]
Mendivil, F. [3 ]
Vrscay, E. R. [4 ]
机构
[1] Univ Milan, Dept Econ Business & Stat, I-20122 Milan, Italy
[2] Univ Guelph, Dept Math & Stat, Guelph, ON N1G 2W1, Canada
[3] Acadia Univ, Dept Math & Stat, Wolfville, NS B0P 1X0, Canada
[4] Univ Waterloo, Dept Appl Math, Waterloo, ON N2L 3G1, Canada
关键词
Cone metric space; Completeness; Contractivity; Self-similarity; Digital image analysis;
D O I
10.1016/j.camwa.2012.02.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use the idea of a scalarization of a cone metric to prove that the topology generated by any cone metric is equivalent to a topology generated by a related metric. We then analyze the case of an ordering cone with empty interior and we provide alternative definitions based on the notion of quasi-interior points. Finally we discuss the implications of such cone metrics in the theory of iterated function systems and generalized fractal transforms and suggest some applications in fractal-based image analysis. (c) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1761 / 1769
页数:9
相关论文
共 26 条
[1]  
Aliprantis Charalambos D., 2007, Cones and duality
[2]   Fixed point theory in cone metric spaces obtained via the scalarization method [J].
Amini-Harandi, A. ;
Fakhar, M. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (11) :3529-3534
[3]  
[Anonymous], 2008, COMM APPL NONLINEAR
[4]  
[Anonymous], WAVELET TOUR SIGNAL
[5]  
[Anonymous], 1998, NATO ASI SERIES F
[6]  
Asadi M., 2011, ARXIV11022353V1MATHF
[7]  
Bot RI, 2009, VECTOR OPTIM, P1, DOI 10.1007/978-3-642-02886-1_1
[8]  
Brunet D., 2011, INT C IM AN REC ICIA
[9]  
Cakalli H., 2010, ARXIV10073123V2MATHG
[10]   A note on cone metric fixed point theory and its equivalence [J].
Du, Wei-Shih .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (05) :2259-2261