Machine learning on neutron and x-ray scattering and spectroscopies

被引:48
|
作者
Chen, Zhantao [1 ,2 ]
Andrejevic, Nina [1 ,3 ]
Drucker, Nathan C. [1 ,4 ]
Nguyen, Thanh [1 ,5 ]
Xian, R. Patrick [6 ]
Smidt, Tess [7 ,8 ]
Wang, Yao [9 ]
Ernstorfer, Ralph [6 ]
Tennant, D. Alan [10 ]
Chan, Maria [11 ]
Li, Mingda [1 ,5 ]
机构
[1] MIT, Quantum Matter Grp, Cambridge, MA 02139 USA
[2] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[3] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[4] Harvard Univ, Sch Engn & Appl Sci, Dept Appl Phys, Cambridge, MA 02138 USA
[5] MIT, Dept Nucl Sci & Engn, Cambridge, MA 02139 USA
[6] Max Planck Gesell, Fritz Haber Inst, D-14195 Berlin, Germany
[7] Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA
[8] Lawrence Berkeley Natl Lab, Ctr Adv Math Energy Res Applicat, Berkeley, CA 94720 USA
[9] Clemson Univ, Dept Phys & Astron, Clemson, SC 29634 USA
[10] Oak Ridge Natl Lab, Neutron Scattering Div, Oak Ridge, TN 37831 USA
[11] Argonne Natl Lab, Ctr Nanoscale Mat, Lemont, IL 60439 USA
来源
CHEMICAL PHYSICS REVIEWS | 2021年 / 2卷 / 03期
基金
欧洲研究理事会; 美国国家科学基金会; 美国能源部;
关键词
SMALL-ANGLE SCATTERING; MATERIALS DISCOVERY; MATRIX FACTORIZATION; BOSON PEAK; SPECTRA; PHASE; CRYSTALLOGRAPHY; 1ST-PRINCIPLES; MODEL; EXCITATIONS;
D O I
10.1063/5.0049111
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Neutron and x-ray scattering represent two classes of state-of-the-art materials characterization techniques that measure materials structural and dynamical properties with high precision. These techniques play critical roles in understanding a wide variety of materials systems from catalysts to polymers, nanomaterials to macromolecules, and energy materials to quantum materials. In recent years, neutron and x-ray scattering have received a significant boost due to the development and increased application of machine learning to materials problems. This article reviews the recent progress in applying machine learning techniques to augment various neutron and x-ray techniques, including neutron scattering, x-ray absorption, x-ray scattering, and photoemission. We highlight the integration of machine learning methods into the typical workflow of scattering experiments, focusing on problems that challenge traditional analysis approaches but are addressable through machine learning, including leveraging the knowledge of simple materials to model more complicated systems, learning with limited data or incomplete labels, identifying meaningful spectra and materials representations, mitigating spectral noise, and others. We present an outlook on a few emerging roles machine learning may play in broad types of scattering and spectroscopic problems in the foreseeable future. (C) 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:26
相关论文
共 50 条
  • [31] NEUTRON AND X-RAY SCATTERING STUDIES OF NEUTRON IRRADIATED IRON CRYSTALS
    Robertson, J. L.
    Stoller, R. E.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 1996, 52 : C408 - C408
  • [32] Pyroelectric X-ray application to X-ray absorption and emission spectroscopies
    Kawai, Jun
    Ishii, Hideshi
    Ida, Hiroyuki
    X-RAY SPECTROMETRY, 2012, 41 (04) : 216 - 218
  • [33] Brillouin and Umklapp scattering in polybutadiene: Comparison of neutron and x-ray scattering
    Sokolov, AP
    Buchenau, U
    Richter, D
    Masciovecchio, C
    Sette, F
    Mermet, A
    Fioretto, D
    Ruocco, G
    Willner, L
    Frick, B
    PHYSICAL REVIEW E, 1999, 60 (03): : R2464 - R2467
  • [34] The future of X-ray and electron spectroscopies
    Bjoerneholm, Olle
    Karis, Olof
    Rensmo, Hakan
    Rubensson, Jan-Erik
    Sassa, Yasmine
    JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA, 2018, 224 : 1 - 2
  • [35] X-ray and electron spectroscopies: An introduction
    Sebilleau, Didier
    Magnetism: A Synchrotron Radiation Approach, 2006, 697 : 15 - 57
  • [36] Charge transfer excitations in VUV and soft X-ray resonant scattering spectroscopies
    Augustin, Edwin
    He, Haowei
    Miao, Lin
    Chuang, Yi-De
    Hussain, Zahid
    Wray, L. Andrew
    JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA, 2017, 220 : 121 - 124
  • [37] STUDIES OF SUPPORTED NICKEL CATALYSTS BY X-RAY PHOTOELECTRON AND ION SCATTERING SPECTROSCOPIES
    WU, M
    HERCULES, DM
    JOURNAL OF PHYSICAL CHEMISTRY, 1979, 83 (15): : 2003 - 2008
  • [38] Machine Learning Methods for X-Ray Scattering Data Analysis from Biomacromolecular Solutions
    Franke, Daniel
    Jeffries, Cy M.
    Svergun, Dmitri, I
    BIOPHYSICAL JOURNAL, 2018, 114 (11) : 2485 - 2492
  • [39] Deep learning for x-ray or neutron scattering under grazing-incidence: extraction of distributions
    Van Herck, Walter
    Fisher, Jonathan
    Ganeva, Marina
    MATERIALS RESEARCH EXPRESS, 2021, 8 (04)
  • [40] Comparing industrial gauges based on neutron and X-ray scattering
    Bartle, C. Murray
    Kroger, Chris
    West, John G.
    PHYSICA B-CONDENSED MATTER, 2006, 385-86 (927-929) : 927 - 929