Machine learning on neutron and x-ray scattering and spectroscopies

被引:49
作者
Chen, Zhantao [1 ,2 ]
Andrejevic, Nina [1 ,3 ]
Drucker, Nathan C. [1 ,4 ]
Nguyen, Thanh [1 ,5 ]
Xian, R. Patrick [6 ]
Smidt, Tess [7 ,8 ]
Wang, Yao [9 ]
Ernstorfer, Ralph [6 ]
Tennant, D. Alan [10 ]
Chan, Maria [11 ]
Li, Mingda [1 ,5 ]
机构
[1] MIT, Quantum Matter Grp, Cambridge, MA 02139 USA
[2] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[3] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[4] Harvard Univ, Sch Engn & Appl Sci, Dept Appl Phys, Cambridge, MA 02138 USA
[5] MIT, Dept Nucl Sci & Engn, Cambridge, MA 02139 USA
[6] Max Planck Gesell, Fritz Haber Inst, D-14195 Berlin, Germany
[7] Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA
[8] Lawrence Berkeley Natl Lab, Ctr Adv Math Energy Res Applicat, Berkeley, CA 94720 USA
[9] Clemson Univ, Dept Phys & Astron, Clemson, SC 29634 USA
[10] Oak Ridge Natl Lab, Neutron Scattering Div, Oak Ridge, TN 37831 USA
[11] Argonne Natl Lab, Ctr Nanoscale Mat, Lemont, IL 60439 USA
来源
CHEMICAL PHYSICS REVIEWS | 2021年 / 2卷 / 03期
基金
美国能源部; 美国国家科学基金会; 欧洲研究理事会;
关键词
SMALL-ANGLE SCATTERING; MATERIALS DISCOVERY; MATRIX FACTORIZATION; BOSON PEAK; SPECTRA; PHASE; CRYSTALLOGRAPHY; 1ST-PRINCIPLES; MODEL; EXCITATIONS;
D O I
10.1063/5.0049111
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Neutron and x-ray scattering represent two classes of state-of-the-art materials characterization techniques that measure materials structural and dynamical properties with high precision. These techniques play critical roles in understanding a wide variety of materials systems from catalysts to polymers, nanomaterials to macromolecules, and energy materials to quantum materials. In recent years, neutron and x-ray scattering have received a significant boost due to the development and increased application of machine learning to materials problems. This article reviews the recent progress in applying machine learning techniques to augment various neutron and x-ray techniques, including neutron scattering, x-ray absorption, x-ray scattering, and photoemission. We highlight the integration of machine learning methods into the typical workflow of scattering experiments, focusing on problems that challenge traditional analysis approaches but are addressable through machine learning, including leveraging the knowledge of simple materials to model more complicated systems, learning with limited data or incomplete labels, identifying meaningful spectra and materials representations, mitigating spectral noise, and others. We present an outlook on a few emerging roles machine learning may play in broad types of scattering and spectroscopic problems in the foreseeable future. (C) 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:26
相关论文
共 251 条
  • [1] Understanding X-ray Spectroscopy of Carbonaceous Materials by Combining Experiments, Density Functional Theory, and Machine Learning. Part II: Quantitative Fitting of Spectra
    Aarva, Anja
    Deringer, Volker L.
    Sainio, Sami
    Laurila, Tomi
    Caro, Miguel A.
    [J]. CHEMISTRY OF MATERIALS, 2019, 31 (22) : 9256 - 9267
  • [2] Deep transfer learning for characterizing chondrocyte patterns in phase contrast X-Ray computed tomography images of the human patellar cartilage
    Abidin, Anas Z.
    Deng, Botao
    DSouza, Adora M.
    Nagarajan, Mahesh B.
    Coan, Paola
    Wismueller, Axel
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2018, 95 : 24 - 33
  • [3] Als-Nielsen J., 2011, ELEMENTS MODERN XRAY, P1, DOI DOI 10.1002/9781119998365.CH1
  • [4] Andrejevic N, 2022, Arxiv, DOI arXiv:2003.00994
  • [5] First-principles calculations of the electronic structure and spectra of strongly correlated systems: dynamical mean-field theory
    Anisimov, VI
    Poteryaev, AI
    Korotin, MA
    Anokhin, AO
    Kotliar, G
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 1997, 9 (35) : 7359 - 7367
  • [6] [Anonymous], 1987, Structure Analysis by Small-Angle X-Ray and Neutron Scattering, DOI DOI 10.1007/978-1-4757-6624-0
  • [7] Classifying and analyzing small-angle scattering data using weighted k nearest neighbors machine learning techniques
    Archibald, Richard K.
    Doucet, Mathieu
    Johnston, Travis
    Young, Steven R.
    Yang, Erika
    Heller, William T.
    [J]. JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2020, 53 : 326 - 334
  • [8] Asahara A., 2019, Proc. AAAI Conf. Artif. Intell, V33, P9410, DOI [10.1609/aaai.v33i01.33019410, DOI 10.1609/AAAI.V33I01.33019410]
  • [9] Neutron scattering in the biological sciences: progress and prospects
    Ashkar, Rana
    Bilheux, Hassina Z.
    Bordallo, Heliosa
    Briber, Robert
    Callaway, David J. E.
    Cheng, Xiaolin
    Chu, Xiang-Qiang
    Curtis, Joseph E.
    Dadmun, Mark
    Fenimore, Paul
    Fushman, David
    Gabel, Frank
    Gupta, Kushol
    Herberle, Frederick
    Heinrich, Frank
    Hong, Liang
    Katsaras, John
    Kelman, Zvi
    Kharlampieva, Eugenia
    Kneller, Gerald R.
    Kovalevsky, Andrey
    Krueger, Susan
    Langan, Paul
    Lieberman, Raquel
    Liu, Yun
    Losche, Mathias
    Lyman, Edward
    Mao, Yimin
    Marino, John
    Mattos, Carla
    Meilleur, Flora
    Moody, Peter
    Nickels, Jonathan D.
    O'Dell, William B.
    O'Neill, Hugh
    Perez-Salas, Ursula
    Peters, Judith
    Petridis, Loukas
    Sokolov, Alexei P.
    Stanley, Christopher
    Wagner, Norman
    Weinrich, Michael
    Weiss, Kevin
    Wymore, Troy
    Zhang, Yang
    Smith, Jeremy C.
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2018, 74 : 1129 - 1168
  • [10] Phase-Mapper: Accelerating Materials Discovery with AI
    Bai, Junwei
    Xue, Yexiang
    Bjorck, Johan
    Le Bras, Ronan
    Rappazzo, Brendan
    Bernstein, Richard
    Suram, Santosh K.
    van Dover, R. Bruce
    Gregoire, John M.
    Gomes, Carla P.
    [J]. AI MAGAZINE, 2018, 39 (01) : 15 - 26