Mechanistic comparison of Bacillus subtilis 6S-1 and 6S-2 RNAs-commonalities and differences

被引:29
作者
Burenina, Olga Y. [1 ,2 ]
Hoch, Philipp G. [3 ]
Damm, Katrin [3 ]
Salas, Margarita [4 ]
Zatsepin, Timofei S. [1 ,2 ]
Lechner, Marcus [3 ]
Oretskaya, Tatiana S. [1 ,2 ]
Kubareva, Elena A. [1 ,2 ]
Hartmann, Roland K. [3 ]
机构
[1] Moscow MV Lomonosov State Univ, Dept Chem, Moscow 119991, Russia
[2] Moscow MV Lomonosov State Univ, AN Belozersky Inst Physicochem Biol, Moscow 119991, Russia
[3] Univ Marburg, Inst Pharmazeut Chem, D-35037 Marburg, Germany
[4] Univ Autonoma Madrid, CSIC, Ctr Biol Mol Severo Ochoa, E-28049 Madrid, Spain
基金
俄罗斯基础研究基金会;
关键词
6S-1; RNA; bsrA; 6S-2; bsrB; pRNA transcripts; affinity for sigma(A)-RNAP; 6S RNA:pRNA hybrid stability; 6S-2 RNA release from RNAP; ESCHERICHIA-COLI; STRUCTURE PREDICTION; POLYMERASE BINDING; INTERGENIC REGION; STATIONARY-PHASE; TRANSCRIPTION; REGULATOR; IDENTIFICATION; EXPRESSION; RELEASE;
D O I
10.1261/rna.042077.113
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Bacterial 6S RNAs bind to the housekeeping RNA polymerase (sigma(A)-RNAP in Bacillus subtilis) to regulate transcription in a growth phase-dependent manner. B. subtilis expresses two 6S RNAs, 6S-1 and 6S-2 RNA, with different expression profiles. We show in vitro that 6S-2 RNA shares hallmark features with 6S-1 RNA: Both (1) are able to serve as templates for pRNA transcription; (2) bind with comparable affinity to sigma(A)-RNAP; (3) are able to specifically inhibit transcription from DNA promoters, and (4) can form stable 6S RNA: pRNA hybrid structures that (5) abolish binding to sigma(A)-RNAP. However, pRNAs of equal length dissociate faster from 6S-2 than 6S-1 RNA, owing to the higher A, U-content of 6S-2 pRNAs. This could have two mechanistic implications: (1) Short 6S-2 pRNAs (<10 nt) dissociate faster instead of being elongated to longer pRNAs, which could make it more difficult for 6S-2 RNA-stalled RNAP molecules to escape from the sequestration; and (2) relative to 6S-1 RNA, 6S-2 pRNAs of equal length will dissociate more rapidly from 6S-2 RNA after RNAP release, which could affect pRNA turnover or the kinetics of 6S-2 RNA binding to a new RNAP molecule. As 6S-2 pRNAs have not yet been detected in vivo, we considered that cellular RNAP release from 6S-2 RNA might occur via 6S-1 RNA displacing 6S-2 RNA from the enzyme, either in the absence of pRNA transcription or upon synthesis of very short 6S-2 pRNAs (similar to 5-mers, which would escape detection by deep sequencing). However, binding competition experiments argued against these possibilities.
引用
收藏
页码:348 / 359
页数:12
相关论文
共 29 条
  • [1] Expression of a small RNA, BS203 RNA, from the yocI-yocJ intergenic region of Bacillus subtilis genome
    Ando, Y
    Asari, S
    Suzuma, S
    Yamane, K
    Nakamura, K
    [J]. FEMS MICROBIOLOGY LETTERS, 2002, 207 (01) : 29 - 33
  • [2] Rapid purification of His6-tagged Bacillus subtilis core RNA polymerase
    Anthony, LC
    Artsimovitch, I
    Svetlov, V
    Landick, R
    Burgess, RR
    [J]. PROTEIN EXPRESSION AND PURIFICATION, 2000, 19 (03) : 350 - 354
  • [3] 6S RNA is a widespread regulator of eubacterial RNA polymerase that resembles an open promoter
    Barrick, JE
    Sudarsan, N
    Weinberg, Z
    Ruzzo, WL
    Breaker, RR
    [J]. RNA, 2005, 11 (05) : 774 - 784
  • [4] A pRNA-induced structural rearrangement triggers 6S-1 RNA release from RNA polymerase in Bacillus subtilis
    Beckmann, Benedikt M.
    Hoch, Philipp G.
    Marz, Manja
    Willkomm, Dagmar K.
    Salas, Margarita
    Hartmann, Roland K.
    [J]. EMBO JOURNAL, 2012, 31 (07) : 1727 - 1738
  • [5] In vivo and in vitro analysis of 6S RNA-templated short transcripts in Bacillus subtilis
    Beckmann, Benedikt M.
    Burenina, Olga Y.
    Hoch, Philipp G.
    Kubareva, Elena A.
    Sharma, Cynthia M.
    Hartmann, Roland K.
    [J]. RNA BIOLOGY, 2011, 8 (05) : 839 - 849
  • [6] Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli
    Bennett, Bryson D.
    Kimball, Elizabeth H.
    Gao, Melissa
    Osterhout, Robin
    Van Dien, Stephen J.
    Rabinowitz, Joshua D.
    [J]. NATURE CHEMICAL BIOLOGY, 2009, 5 (08) : 593 - 599
  • [7] Partition function and base pairing probabilities of RNA heterodimers
    Bernhart, Stephan H.
    Tafer, Hakim
    Mueckstein, Ulrike
    Flamm, Christoph
    Stadler, Peter F.
    Hofacker, Ivo L.
    [J]. ALGORITHMS FOR MOLECULAR BIOLOGY, 2006, 1 (1)
  • [8] RNAalifold: improved consensus structure prediction for RNA alignments
    Bernhart, Stephan H.
    Hofacker, Ivo L.
    Will, Sebastian
    Gruber, Andreas R.
    Stadler, Peter F.
    [J]. BMC BIOINFORMATICS, 2008, 9 (1)
  • [9] Rfam 11.0: 10 years of RNA families
    Burge, Sarah W.
    Daub, Jennifer
    Eberhardt, Ruth
    Tate, John
    Barquist, Lars
    Nawrocki, Eric P.
    Eddy, Sean R.
    Gardner, Paul P.
    Bateman, Alex
    [J]. NUCLEIC ACIDS RESEARCH, 2013, 41 (D1) : D226 - D232
  • [10] Initiating nucleotide identity determines efficiency of RNA synthesis from 6S RNA templates in Bacillus subtilis but not Escherichia coli
    Cabrera-Ostertag, Ignacio J.
    Cavanagh, Amy T.
    Wassarman, Karen M.
    [J]. NUCLEIC ACIDS RESEARCH, 2013, 41 (15) : 7501 - 7511