Effect of thermal oxidation on the corrosion resistance of Ti6Al4V alloy in hydrochloric and nitric acid medium

被引:14
|
作者
Jamesh, M. [1 ]
Kumar, Satendra [2 ]
Narayanan, T. S. N. Sankara [2 ]
Chu, P. K. [1 ]
机构
[1] City Univ Hong Kong, Dept Phys & Mat Sci, Kowloon, Hong Kong, Peoples R China
[2] CSIR, Natl Met Lab, Madras Ctr, Madras 600113, Tamil Nadu, India
来源
关键词
Ti6Al4V alloy; surface modification; thermal oxidation; corrosion resistance; acid medium; TITANIUM-ALLOYS; TI-6AL-4V ALLOY; SURFACE MODIFICATION; SULFURIC-ACID; CP-TI; BEHAVIOR;
D O I
10.1002/maco.201106321
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The characteristics of Ti6Al4V alloy subjected to thermal oxidation in air atmosphere at 650 degrees C for 48h and its corrosion behavior in 0.1 and 4M HCl and HNO3 medium are addressed. When compared to the naturally formed oxide layer (approximate to 4-6nm), a relatively thicker oxide scale (approximate to 7 mu m) is formed throughout the surface of Ti6Al4V alloy after thermal oxidation. XRD pattern disclose the formation of the rutile and oxygen-diffused titanium as the predominant phases. A significant improvement in the hardness (from 324 +/- 8 to 985 +/- 40 HV0.25) is observed due to the formation of hard oxide layer on the surface followed by the presence of an oxygen diffusion zone beneath it. Electrochemical studies reveal that the thermally oxidized Ti6Al4V alloy offers a better corrosion resistance than its untreated counterpart in both HCl and HNO3 medium. The uniform surface coverage, compactness and thickness of the oxide layer provide an effective barrier towards corrosion of the Ti6Al4V alloy. The study concludes that thermal oxidation is an effective approach to engineer the surface of Ti6Al4V alloy to increase its corrosion resistance in HCl and HNO3 medium.
引用
收藏
页码:902 / 907
页数:6
相关论文
共 50 条
  • [21] The synergetic effect of micro-blasting and thermal oxidation on the corrosion performance of Ti6Al4V
    Jeyalakshmi, P.
    Ramkumar, P.
    SURFACE & COATINGS TECHNOLOGY, 2023, 467
  • [22] Oxidation and corrosion protection by halide treatment of powder metallurgy Ti and Ti6Al4V alloy
    Tsipas, S. A.
    Gordo, E.
    Jimenez-Morales, A.
    CORROSION SCIENCE, 2014, 88 : 263 - 274
  • [23] Effect of oxidation time on microarc oxidation ceramic coatings on Ti6Al4V alloy
    Wang, Ya-Ming
    Lei, Ting-Quan
    Jiang, Bai-Ling
    Jia, De-Chang
    Zhou, Yu
    Cailiao Kexue yu Gongyi/Material Science and Technology, 2003, 11 (03): : 244 - 247
  • [24] Corrosion resistance properties of plasma nitrided Ti-6Al-4V alloy in nitric acid solutions
    Fossati, A
    Borgioli, F
    Galvanetto, E
    Bacci, T
    CORROSION SCIENCE, 2004, 46 (04) : 917 - 927
  • [25] Effect of stage gas nitriding on corrosion and wear resistance of Ti6Al4V alloy in physiological environment
    Tkachuk, O. V.
    Sheykin, S. E.
    Lavrys, S. M.
    Rostotskii, I. Yu
    Danyliak, M. -O. M.
    Pohrelyuk, I. M.
    Proskurnyak, R. V.
    VACUUM, 2024, 230
  • [26] Corrosion resistance of molybdenum nitride modified Ti6Al4V alloy in HCl solution
    Fan Ailan
    Qin Lin
    Tian Linhai
    Tang Bin
    JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION, 2008, 23 (03): : 358 - 361
  • [27] Corrosion resistance of Molybdenum Nitride modified Ti6Al4V alloy in HCl solution
    Ailan Fan
    Lin Qin
    Linhai Tian
    Bin Tang
    Journal of Wuhan University of Technology-Mater. Sci. Ed., 2008, 23 : 358 - 361
  • [28] Corrosion Resistance of a Plasma-Oxidized Ti6Al4V Alloy for Dental Applications
    Velazquez-Torres, N.
    Porcayo-Calderon, J.
    Martinez-Valencia, H.
    Lopes-Cecenes, R.
    Rosales-Cadena, I
    Sarmiento-Bustos, E.
    Rocabruno-Valdes, C., I
    Gonzalez-Rodriguez, J. G.
    COATINGS, 2021, 11 (09)
  • [29] Oxidation behaviour of Ti6Al4V titanium alloy in oxygen
    Mungole, MN
    Singh, N
    Mathur, GN
    MATERIALS SCIENCE AND TECHNOLOGY, 2002, 18 (01) : 111 - 114
  • [30] Vacuum Oxidation Treatment on Ti6Al4V Titanium Alloy
    Yang, Chuang
    Liu, Jing
    Ma, Ya-Qin
    Xiao, Fa-Qin
    Surface Technology, 2017, 46 (05): : 165 - 170