Axial Behavior of Noncircular High-Performance Fiber-Reinforced Cementitious Composite Members Externally Jacketed by CFRP Sheets

被引:8
|
作者
Demir, Ugur [1 ]
Ispir, Medine [1 ]
Sahinkaya, Yusuf [1 ,2 ]
Arslan, Giray [3 ]
Ilki, Alper [4 ]
机构
[1] Istanbul Tech Univ, Civil Engn Fac, Struct & Earthquake Engn Lab, TR-34469 Istanbul, Turkey
[2] Istanbul Medeniyet Univ, Dept Civil Engn, TR-34700 Istanbul, Turkey
[3] Yapi Merkezi Prefabricat Inc, Baraj Yolu Cad 60, TR-34935 Istanbul, Turkey
[4] Istanbul Tech Univ, Civil Engn Fac, TR-34469 Istanbul, Turkey
关键词
Cementitious composite; Concrete; Confinement; Ductility; Fiber-reinforced polymer (FRP); High-performance fiber-reinforced cementitious composite (HPFRCC); HIGH-STRENGTH CONCRETE; FRP-CONFINED CONCRETE; STRESS-STRAIN MODEL; COMPRESSIVE BEHAVIOR; TUBE COLUMNS; POLYMER; SQUARE; DESIGN; STEEL; RETROFIT;
D O I
10.1061/(ASCE)CC.1943-5614.0000940
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
As the first study reported in the literature on the axial behavior of noncircular high-performance fiber-reinforced cementitious composite (HPFRCC) members externally jacketed by fiber-reinforced polymer (FRP) sheets, the aim of this paper is to experimentally identify the axial behavior characteristics of these members under compression. The test results of 21 specimens showed that the axial and lateral deformation characteristics of FRP-jacketed HPFRCC members are significantly different from those of FRP-confined conventional concrete members. Small voids in HPFRCCs due to the presence of fine aggregates and reduced crack widths due to the contribution of steel fibers limit the transverse deformations remarkably until the axial strain value is approximately 0.0035. The test results show that the dilation ratio increases after the axial strain reaches this value. Then, the external FRP jacket begins to noticeably affect the behavior, resulting in a significant improvement in the axial strength and deformation capacity. However, since the external FRP jacket is activated after relatively large axial strains, significant strength degradations can occur before the FRP jacket provides an effective contribution. As the stiffness of the FRP jacket increases, the strength degradation experienced before the activation of the FRP jacket decreases. Furthermore, the predictions of five available models that were developed for modeling the axial behavior of FRP-confined concrete are examined through comparisons with test results.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Strain Softening of High-Performance Fiber-Reinforced Cementitious Composites in Uniaxial Compression
    Seung-Hee Kwon
    Jung-Soo Lee
    Kyungtaek Koh
    Hyeong-Ki Kim
    International Journal of Concrete Structures and Materials, 18
  • [42] The effect of high-performance fiber-reinforced cementitious composites on the lateral behavior of reinforced concrete frames without seismic details
    Saghafi, Mohammad Hossein
    Golafshar, Ali
    Zareian, Mohammad Sajjad
    Kashani, Mohammad
    STRUCTURES, 2020, 26 : 801 - 813
  • [43] The Effects of Loading Rate and Duration on the Axial Behavior of Low-Strength and Medium-Strength Noncircular Concrete Members Confined by Fiber-Reinforced Polymer Sheets
    Demir, Cem
    Kucukkapili, Aygul
    Doyrangol, Duygu
    Ilki, Alper
    POLYMERS, 2014, 6 (06): : 1685 - 1704
  • [44] Prediction of Flexural Behavior of Fiber-Reinforced High-Performance Concrete
    Chand, Umesh
    RECYCLED WASTE MATERIALS, EGRWSE 2018, 2019, 32 : 193 - 198
  • [45] Applications of machine learning methods for design and characterization of high-performance fiber-reinforced cementitious composite (HPFRCC): a review
    Guo, Pengwei
    Moghaddas, Seyed A.
    Liu, Yiming
    Meng, Weina
    Li, Victor C.
    Bao, Yi
    JOURNAL OF SUSTAINABLE CEMENT-BASED MATERIALS, 2025,
  • [46] Experimental Investigation of High-performance Fiber-reinforced Cementitious Composite and its Effect on RC Beams by Numerical Method
    Khaleghi, Reza
    Shokoohfar, Ahmad
    Farokhzad, Reza
    TahamouliRoudsari, Mehrzad
    PERIODICA POLYTECHNICA-CIVIL ENGINEERING, 2024,
  • [47] Influence of carbon fiber on the electromagnetic shielding effectiveness of high-performance fiber-reinforced cementitious composites
    Park, Gijoon
    Kim, Sungwook
    Park, Gang-Kyu
    Lee, Namkon
    JOURNAL OF BUILDING ENGINEERING, 2021, 35
  • [48] Processing of a Green Fiber-Reinforced Composite of High-Performance Curaua Fiber in Polyester
    Noan Tonini Simonassi
    Fabio Oliveira Braga
    Sergio Neves Monteiro
    JOM, 2018, 70 : 1958 - 1964
  • [49] Processing of a Green Fiber-Reinforced Composite of High-Performance Curaua Fiber in Polyester
    Simonassi, Noan Tonini
    Braga, Fabio Oliveira
    Monteiro, Sergio Neves
    JOM, 2018, 70 (10) : 1958 - 1964
  • [50] FIBER-REINFORCED, HIGH-PERFORMANCE SUPERALLOYS
    ZANCHUK, WA
    JOURNAL OF METALS, 1988, 40 (05): : 52 - 53