Axial Behavior of Noncircular High-Performance Fiber-Reinforced Cementitious Composite Members Externally Jacketed by CFRP Sheets

被引:8
|
作者
Demir, Ugur [1 ]
Ispir, Medine [1 ]
Sahinkaya, Yusuf [1 ,2 ]
Arslan, Giray [3 ]
Ilki, Alper [4 ]
机构
[1] Istanbul Tech Univ, Civil Engn Fac, Struct & Earthquake Engn Lab, TR-34469 Istanbul, Turkey
[2] Istanbul Medeniyet Univ, Dept Civil Engn, TR-34700 Istanbul, Turkey
[3] Yapi Merkezi Prefabricat Inc, Baraj Yolu Cad 60, TR-34935 Istanbul, Turkey
[4] Istanbul Tech Univ, Civil Engn Fac, TR-34469 Istanbul, Turkey
关键词
Cementitious composite; Concrete; Confinement; Ductility; Fiber-reinforced polymer (FRP); High-performance fiber-reinforced cementitious composite (HPFRCC); HIGH-STRENGTH CONCRETE; FRP-CONFINED CONCRETE; STRESS-STRAIN MODEL; COMPRESSIVE BEHAVIOR; TUBE COLUMNS; POLYMER; SQUARE; DESIGN; STEEL; RETROFIT;
D O I
10.1061/(ASCE)CC.1943-5614.0000940
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
As the first study reported in the literature on the axial behavior of noncircular high-performance fiber-reinforced cementitious composite (HPFRCC) members externally jacketed by fiber-reinforced polymer (FRP) sheets, the aim of this paper is to experimentally identify the axial behavior characteristics of these members under compression. The test results of 21 specimens showed that the axial and lateral deformation characteristics of FRP-jacketed HPFRCC members are significantly different from those of FRP-confined conventional concrete members. Small voids in HPFRCCs due to the presence of fine aggregates and reduced crack widths due to the contribution of steel fibers limit the transverse deformations remarkably until the axial strain value is approximately 0.0035. The test results show that the dilation ratio increases after the axial strain reaches this value. Then, the external FRP jacket begins to noticeably affect the behavior, resulting in a significant improvement in the axial strength and deformation capacity. However, since the external FRP jacket is activated after relatively large axial strains, significant strength degradations can occur before the FRP jacket provides an effective contribution. As the stiffness of the FRP jacket increases, the strength degradation experienced before the activation of the FRP jacket decreases. Furthermore, the predictions of five available models that were developed for modeling the axial behavior of FRP-confined concrete are examined through comparisons with test results.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Review of using glass in high-performance fiber-reinforced cementitious composites
    Guo, Pengwei
    Bao, Yi
    Meng, Weina
    CEMENT & CONCRETE COMPOSITES, 2021, 120
  • [32] Seismic Performance of High-Performance Fiber-Reinforced Cement-Based Composite Structural Members: A Review
    Shao, Yi
    Nguyen, Wilson
    Bandelt, Matthew J.
    Ostertag, Claudia P.
    Billington, Sarah L.
    JOURNAL OF STRUCTURAL ENGINEERING, 2022, 148 (10)
  • [33] Mechanical Behavior and Innovative Applications of Fiber-Reinforced Cementitious Composite and Fiber-Reinforced Polymer in Infrastructures
    Shi, Jianzhe
    Wang, Haitao
    Cao, Xuyang
    BUILDINGS, 2024, 14 (12)
  • [34] Pullout Behavior of Bundled Aramid Fiber in Fiber-Reinforced Cementitious Composite
    Kanakubo, Toshiyuki
    Echizen, Saki
    Wang, Jin
    Mu, Yu
    MATERIALS, 2020, 13 (07)
  • [35] Tri-axial compressive properties of high-performance fiber-reinforced cementitious composites after exposure to high temperatures
    Li, Xiuling
    Xu, Huachuan
    Meng, Weina
    Bao, Yi
    CONSTRUCTION AND BUILDING MATERIALS, 2018, 190 : 939 - 947
  • [36] Deficient RC Slabs Strengthened with Combined FRP Layer and High-Performance Fiber-Reinforced Cementitious Composite
    Ebadi-Jamkhaneh, Mehdi
    Ahmadi, Masoud
    Kontoni, Denise-Penelope N.
    PERSPECTIVES IN DYNAMICAL SYSTEMS II-NUMERICAL AND ANALYTICAL APPROACHES, DSTA 2021, 2024, 454 : 157 - 168
  • [37] Strengthening of reinforced concrete columns by High-Performance Fiber-Reinforced Cementitious Composite (HPFRC) sprayed mortar with strengthening bars
    Cho, Chang-Geun
    Han, Byung-Chan
    Lim, Seung-Chan
    Morii, Noharu
    Kim, Jae-Whan
    COMPOSITE STRUCTURES, 2018, 202 : 1078 - 1086
  • [38] Substitution effects of conventional concrete with high-performance fiber-reinforced cementitious composite (HPFRCC) in beams reinforced with GFRP bars
    Esfahani, Seyyed Vasegh Mousavi
    Sharbatdar, Mohammad Kazem
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2020, 13
  • [39] Responses of composite beams with high-performance fiber-reinforced concrete
    Duy-Liem Nguyen
    Thai, Duc-Kien
    Nguyen, H. T. Tai
    Thac-Quang Nguyen
    Kien Le-Trung
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 270
  • [40] Strain Softening of High-Performance Fiber-Reinforced Cementitious Composites in Uniaxial Compression
    Kwon, Seung-Hee
    Lee, Jung-Soo
    Koh, Kyungtaek
    Kim, Hyeong-Ki
    INTERNATIONAL JOURNAL OF CONCRETE STRUCTURES AND MATERIALS, 2024, 18 (01)