On the Number of Distinct Values of a Class of Functions with Finite Domain

被引:8
作者
Coulter, Robert S. [1 ]
Senger, Steven [1 ]
机构
[1] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
关键词
bounds on image sets; planar functions; HADAMARD DIFFERENCE SETS; PRESEMIFIELDS; POLYNOMIALS; FIELDS;
D O I
10.1007/s00026-014-0220-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By relating the number of images of a function with finite domain to a certain parameter, we obtain both an upper and lower bound for the image set. Even though the arguments are elementary, the bounds are, in some sense, best possible. These bounds are then applied in several contexts. In particular, we obtain the first non-trivial upper bound for the image set of a planar function over a finite field.
引用
收藏
页码:233 / 243
页数:11
相关论文
共 15 条
[1]  
Carlitz Leonard., 1955, Proceedings of the Japan Academy, V31, P119
[2]   VALUES OF A POLYNOMIAL OVER A FINITE FIELD [J].
COHEN, SD .
GLASGOW MATHEMATICAL JOURNAL, 1973, 14 (SEP) :205-208
[3]   Commutative presemifields and semifields [J].
Coulter, Robert S. ;
Henderson, Marie .
ADVANCES IN MATHEMATICS, 2008, 217 (01) :282-304
[4]   On the number of distinct values of a class of functions over a finite field [J].
Coulter, Robert S. ;
Matthews, Rex W. .
FINITE FIELDS AND THEIR APPLICATIONS, 2011, 17 (03) :220-224
[5]   Bent polynomials over finite fields [J].
Coulter, RS ;
Matthews, RW .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1997, 56 (03) :429-437
[6]   PLANES OF ORDER N WITH COLLINEATION GROUPS OF ORDER N2 [J].
DEMBOWSKI, P ;
OSTROM, TG .
MATHEMATISCHE ZEITSCHRIFT, 1968, 103 (03) :239-&
[7]   A family of skew Hadamard difference sets [J].
Ding, Cunsheng ;
Yuan, Jin .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2006, 113 (07) :1526-1535
[8]  
Hall JI, Notes on coding theory (chapter 5-generalized Reed-Solomon codes)
[9]  
Kyureghyan GM, 2008, LECT NOTES COMPUT SC, V5130, P117, DOI 10.1007/978-3-540-69499-1_10
[10]  
Nathanson M. B., 1996, Additive Number Theory: The Classical Bases