Induction of metastasis, cancer stem cell phenotype, and oncogenic metabolism in cancer cells by ionizing radiation

被引:437
作者
Lee, Su Yeon [1 ]
Jeong, Eui Kyong [1 ]
Ju, Min Kyung [1 ]
Jeon, Hyun Min [1 ]
Kim, Min Young [2 ]
Kim, Cho Hee [1 ,3 ]
Park, Hye Gyeong [4 ]
Han, Song Iy [5 ]
Kang, Ho Sung [1 ]
机构
[1] Pusan Natl Univ, Dept Mol Biol, Coll Nat Sci, Pusan 609735, South Korea
[2] DIRAMS, Res Ctr, Pusan 619953, South Korea
[3] DNA Identificat Ctr, Natl Forens Serv, Seoul 158707, South Korea
[4] Pusan Natl Univ, Nanobiotechnol Ctr, Pusan 609735, South Korea
[5] Chosun Univ, Div Nat Med Sci, Coll Hlth Sci, Gwangju 501759, South Korea
基金
新加坡国家研究基金会;
关键词
Radiotherapy; Epithelial-mesenchymal transition; Metastasis; Cancer stem cells; Oncogenic metabolism; Tumour microenvironment; Reactive oxygen species; Radioresistance; Snail; EPITHELIAL-MESENCHYMAL TRANSITION; GROWTH-FACTOR RECEPTOR; PERSISTENT OXIDATIVE STRESS; PYRUVATE-KINASE M2; BREAST-CANCER; TGF-BETA; TUMOR MICROENVIRONMENT; DNA-DAMAGE; PANCREATIC-CANCER; OVARIAN-CANCER;
D O I
10.1186/s12943-016-0577-4
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Radiation therapy is one of the major tools of cancer treatment, and is widely used for a variety of malignant tumours. Radiotherapy causes DNA damage directly by ionization or indirectly via the generation of reactive oxygen species (ROS), thereby destroying cancer cells. However, ionizing radiation (IR) paradoxically promotes metastasis and invasion of cancer cells by inducing the epithelial-mesenchymal transition (EMT). Metastasis is a major obstacle to successful cancer therapy, and is closely linked to the rates of morbidity and mortality of many cancers. ROS have been shown to play important roles in mediating the biological effects of IR. ROS have been implicated in IR-induced EMT, via activation of several EMT transcription factors-including Snail, HIF-1, ZEB1, and STAT3-that are activated by signalling pathways, including those of TGF-beta, Wnt, Hedgehog, Notch, G-CSF, EGFR/PI3K/Akt, and MAPK. Cancer cells that undergo EMT have been shown to acquire stemness and undergo metabolic changes, although these points are debated. IR is known to induce cancer stem cell (CSC) properties, including dedifferentiation and self-renewal, and to promote oncogenic metabolism by activating these EMT-inducing pathways. Much accumulated evidence has shown that metabolic alterations in cancer cells are closely associated with the EMT and CSC phenotypes; specifically, the IR-induced oncogenic metabolism seems to be required for acquisition of the EMT and CSC phenotypes. IR can also elicit various changes in the tumour microenvironment (TME) that may affect invasion and metastasis. EMT, CSC, and oncogenic metabolism are involved in radioresistance; targeting them may improve the efficacy of radiotherapy, preventing tumour recurrence and metastasis. This study focuses on the molecular mechanisms of IR-induced EMT, CSCs, oncogenic metabolism, and alterations in the TME. We discuss how IR-induced EMT/CSC/oncogenic metabolism may promote resistance to radiotherapy; we also review efforts to develop therapeutic approaches to eliminate these IR-induced adverse effects.
引用
收藏
页数:25
相关论文
共 351 条
[1]   Potential Mechanisms for Cancer Resistance in Elephants and Comparative Cellular Response to DNA Damage in Humans [J].
Abegglen, Lisa M. ;
Caulin, Aleah F. ;
Chan, Ashley ;
Lee, Kristy ;
Robinson, Rosann ;
Campbell, Michael S. ;
Kiso, Wendy K. ;
Schmitt, Dennis L. ;
Waddell, Peter J. ;
Bhaskara, Srividya ;
Jensen, Shane T. ;
Maley, Carlo C. ;
Schiffman, Joshua D. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2015, 314 (17) :1850-1860
[2]   Metabolic Reprogramming and Dependencies Associated with Epithelial Cancer Stem Cells Independent of the Epithelial-Mesenchymal Transition Program [J].
Aguilar, Esther ;
Marin de Mas, Igor ;
Zodda, Erika ;
Marin, Silvia ;
Morrish, Fionnuala ;
Selivanov, Vitaly ;
Meca-Cortes, Oscar ;
Delowar, Hossain ;
Pons, Monica ;
Izquierdo, Ines ;
Celia-Terrassa, Toni ;
de Atauri, Pedro ;
Centelles, Josep J. ;
Hockenbery, David ;
Thomson, Timothy M. ;
Cascante, Marta .
STEM CELLS, 2016, 34 (05) :1163-1176
[3]   Cancer across the tree of life: cooperation and cheating in multicellularity [J].
Aktipis, C. Athena ;
Boddy, Amy M. ;
Jansen, Gunther ;
Hibner, Urszula ;
Hochberg, Michael E. ;
Maley, Carlo C. ;
Wilkinson, Gerald S. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2015, 370 (1673)
[4]   Dispersal Evolution in Neoplasms: The Role of Disregulated Metabolism in the Evolution of Cell Motility [J].
Aktipis, C. Athena ;
Maley, Carlo C. ;
Pepper, John W. .
CANCER PREVENTION RESEARCH, 2012, 5 (02) :266-275
[5]   Prospective identification of tumorigenic breast cancer cells [J].
Al-Hajj, M ;
Wicha, MS ;
Benito-Hernandez, A ;
Morrison, SJ ;
Clarke, MF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (07) :3983-3988
[6]   Mechanisms of therapy-related carcinogenesis [J].
Allan, JM ;
Lois, BT .
NATURE REVIEWS CANCER, 2005, 5 (12) :943-955
[7]   Dichloroacetate alters Warburg metabolism, inhibits cell growth, and increases the X-ray sensitivity of human A549 and H1299 NSC lung cancer cells [J].
Allen, Kah Tan ;
Chin-Sinex, Helen ;
DeLuca, Thomas ;
Pomerening, Joseph R. ;
Sherer, Jeremy ;
Watkins, John B., III ;
Foley, John ;
Jesseph, Jerry M. ;
Mendonca, Marc S. .
FREE RADICAL BIOLOGY AND MEDICINE, 2015, 89 :263-273
[8]   WNT signalling pathways as therapeutic targets in cancer [J].
Anastas, Jamie N. ;
Moon, Randall T. .
NATURE REVIEWS CANCER, 2013, 13 (01) :11-26
[9]   Ionizing radiation predisposes nonmalignant human mammary epithelial cells to undergo transforming growth factor β-induced epithelial to mesenchymal transition [J].
Andarawewa, Kurnari L. ;
Erickson, Anna C. ;
Chou, William S. ;
Costes, Sylvain V. ;
Gascard, Philippe ;
Mott, Joni D. ;
Bissell, Mina J. ;
Barcellos-Hoff, Mary Helen .
CANCER RESEARCH, 2007, 67 (18) :8662-8670
[10]   EMT or EMT-promoting transcription factors, where to focus the light? [J].
Ansieau, Stephane ;
Colli, Guillaume ;
Hill, Louise .
FRONTIERS IN ONCOLOGY, 2014, 4