Motor imagery classification based on joint regression model and spectral power

被引:12
|
作者
Hu, Sanqing [1 ]
Tian, Qiangqiang [1 ]
Cao, Yu [2 ]
Zhang, Jianhai [1 ]
Kong, Wanzeng [1 ]
机构
[1] Hangzhou Dianzi Univ, Coll Comp Sci, Hangzhou 310018, Zhejiang, Peoples R China
[2] Univ Tennessee, Coll Engn & Comp Sci, Chattanooga, TN 37403 USA
基金
美国国家科学基金会;
关键词
Joint regression model; Auto-regression model; Spectral power; EEG; ERD; Motor imagery; BRAIN-COMPUTER INTERFACES; ALGORITHMS; TASKS; BCI;
D O I
10.1007/s00521-012-1244-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A brain-computer interface (BCI) based on motor imagery (MI) translates the subject's motor intention into a control signal through classifying electroencephalogram (EEG) patterns of different imagination tasks, for example, hand movements. Auto-regression (AR) model is one of the popular methods to describe motor imagery patterns, which is widely used by researchers to resolve subject's motor intention. In this paper, we use joint regression (JR) model and propose an algorithm by combining the coefficients of JR model and spectral powers at two specific frequencies to classify different MI patterns. The algorithm produces a classification accuracy of 90 % on the training data of one subject from BCI2003 Data set III and 80 % on the test data. The results are better than that by using AR model. We also apply the algorithm to MI tasks of one subject in our laboratory, and the classification accuracy can reach 97.86 % on the test data. The results demonstrate that the combination of JR model and spectral powers can achieve much higher accuracy for classification of MI tasks.
引用
收藏
页码:1931 / 1936
页数:6
相关论文
共 50 条
  • [21] A Single-trial Decoding Method by Integrating Accumulated Continuous Classification for Motor Imagery based BCI
    Yao, Lin
    Shu, Xiaokang
    Sun, Chao
    Sheng, Xinjun
    Zhang, Dingguo
    Zhu, Xiangyang
    2014 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION (ICIA), 2014, : 200 - 203
  • [22] Multiclass motor imagery classification with Riemannian geometry and temporal-spectral selection
    Li, Zhaohui
    Tan, Xiaohui
    Li, Xinyu
    Yin, Liyong
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2024, 62 (10) : 2961 - 2973
  • [23] Ternary ECOC Classifiers Coupled with Optimized Spatio-Spectral Patterns for Multiclass Motor Imagery Classification
    Shahtalebi, Soroosh
    Mohammadi, Arash
    2017 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2017, : 2231 - 2236
  • [24] Motor imagery signal classification based on transfer learning
    Yang, Banghua
    Zheng, Minmin
    Guan Cuntai
    Li Bo
    2019 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND VIRTUAL ENVIRONMENTS FOR MEASUREMENT SYSTEMS AND APPLICATIONS (CIVEMSA 2019), 2019, : 53 - 57
  • [25] Logistic Regression With Tangent Space-Based Cross-Subject Learning for Enhancing Motor Imagery Classification
    Gaur, Pramod
    Chowdhury, Anirban
    McCreadie, Karl
    Pachori, Ram Bilas
    Wang, Hui
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2022, 14 (03) : 1188 - 1197
  • [26] Introducing the Use of Model-Based Evolutionary Algorithms for EEG-Based Motor Imagery Classification
    Santana, Roberto
    Bonnet, Laurent
    Legeny, Jozef
    Lecuyer, Anatole
    PROCEEDINGS OF THE FOURTEENTH INTERNATIONAL CONFERENCE ON GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2012, : 1159 - 1166
  • [27] Adaptation of motor imagery EEG classification model based on tensor decomposition
    Li, Xinyang
    Guan, Cuntai
    Zhang, Haihong
    Ang, Kai Keng
    Ong, Sim Heng
    JOURNAL OF NEURAL ENGINEERING, 2014, 11 (05)
  • [28] A contralateral channel guided model for EEG based motor imagery classification
    Sun, Lei
    Feng, Zuren
    Chen, Badong
    Lu, Na
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2018, 41 : 1 - 9
  • [29] PSO-based feature selection and neighborhood rough set-based classification for BCI multiclass motor imagery task
    Kumar, S. Udhaya
    Inbarani, H. Hannah
    NEURAL COMPUTING & APPLICATIONS, 2017, 28 (11) : 3239 - 3258
  • [30] Dynamic Joint Domain Adaptation Network for Motor Imagery Classification
    Hong, Xiaolin
    Zheng, Qingqing
    Liu, Luyan
    Chen, Peiyin
    Ma, Kai
    Gao, Zhongke
    Zheng, Yefeng
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2021, 29 : 556 - 565