A Novel Incremental Multi-Template Update Strategy for Robust Object Tracking

被引:1
作者
Xie, Qingsong [1 ,2 ]
Liu, Kewei [2 ]
An, Zhiyong [1 ,3 ]
Wang, Lei [4 ]
Li, Ye [5 ]
Xiang, Zhongliang [5 ]
机构
[1] Shandong Technol & Business Univ, Sch Comp Sci & Technol, Yantai 264005, Peoples R China
[2] Shandong Technol & Business Univ, Sch Informat & Elect Engn, Yantai 264005, Peoples R China
[3] Shandong Coinnovat Ctr Future Intelligent Comp, Yantai 264005, Peoples R China
[4] Shandong Technol & Business Univ, Sch Math, Yantai 264005, Peoples R China
[5] Weifang Univ Sci & Technol, Dept Comp Software Inst, Weifang 262700, Peoples R China
来源
IEEE ACCESS | 2020年 / 8卷
基金
中国国家自然科学基金;
关键词
Target tracking; Robustness; Object tracking; Filtering algorithms; Correlation; Information filtering; correlation filter; multi-template; MODEL;
D O I
10.1109/ACCESS.2020.3021786
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the field of correlation filter object tracking, the traditional template-update method easily causes template drift, so it performs poorly in complex scenes. To enhance the robustness of the template, a novel incremental multi-template update strategy is proposed in this paper. We find that reliability varies among all historical filters and that highly reliable filters are key to achieving accurate tracking. The incremental multi-template update strategy combines the local maximum-reliability filter template with the historical filter template incrementally, which is obviously different from the traditional update method. We apply this strategy to two trackers with superior performance. The experimental results of three test benchmarks, including the VOT2016, OTB100 and UAV123 datasets, show that the performance of our trackers is superior to that of the state-of-the-art trackers.
引用
收藏
页码:162668 / 162682
页数:15
相关论文
共 63 条
  • [1] [Anonymous], 2014, P BRIT MACH VIS C BM
  • [2] [Anonymous], 2014, ABS14053531 CORR
  • [3] Balaji SR, 2017, PROCEEDINGS OF 2017 11TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND CONTROL (ISCO 2017), P469, DOI 10.1109/ISCO.2017.7856037
  • [4] Staple: Complementary Learners for Real-Time Tracking
    Bertinetto, Luca
    Valmadre, Jack
    Golodetz, Stuart
    Miksik, Ondrej
    Torr, Philip H. S.
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 1401 - 1409
  • [5] Fully-Convolutional Siamese Networks for Object Tracking
    Bertinetto, Luca
    Valmadre, Jack
    Henriques, Joao F.
    Vedaldi, Andrea
    Torr, Philip H. S.
    [J]. COMPUTER VISION - ECCV 2016 WORKSHOPS, PT II, 2016, 9914 : 850 - 865
  • [6] Multi-Template Scale-Adaptive Kernelized Correlation Filters
    Bibi, Adel
    Ghanem, Bernard
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOP (ICCVW), 2015, : 613 - 620
  • [7] Bolme DS, 2010, PROC CVPR IEEE, P2544, DOI 10.1109/CVPR.2010.5539960
  • [8] Estimation for a Class of Parameter-Controlled Tunnel Diode Circuits
    Chang, Xiao-Heng
    Xiong, Jun
    Park, Ju H.
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2020, 50 (11): : 4697 - 4707
  • [9] Dual Deep Network for Visual Tracking
    Chi, Zhizhen
    Li, Hongyang
    Lu, Huchuan
    Yang, Ming-Hsuan
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (04) : 2005 - 2015
  • [10] Dalal N., 2005, P IEEE COMP SOC C CO, P118