Minimal surfaces of Riemann type in three-dimensional product manifolds

被引:42
作者
Hauswirth, L [1 ]
机构
[1] Univ Marne La Vallee, F-77454 Marne La Vallee, France
关键词
periodic minimal surface; harmonic map; stable minimal surface; stability index; Jacobi field; Jacobi operator;
D O I
10.2140/pjm.2006.224.91
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct and classify minimal surfaces foliated by horizontal curves of constant curvature in H-2 x R, R-2 x R and S-2 x R. The main tool is the existence of a Shiffman Jacobi field; such fields characterize the property of being foliated by circles in these product manifolds.
引用
收藏
页码:91 / 117
页数:27
相关论文
共 21 条
[1]  
ABRESCH U, 1987, J REINE ANGEW MATH, V374, P169
[2]   THE GAUSS MAP AND SPACELIKE SURFACES WITH PRESCRIBED MEAN-CURVATURE IN MINKOWSKI 3-SPACE [J].
AKUTAGAWA, K ;
NISHIKAWA, S .
TOHOKU MATHEMATICAL JOURNAL, 1990, 42 (01) :67-82
[3]  
DANIEL B, 2004, MATHDG0406426
[4]  
EARP RS, 2004, SCREW MOTION SURFACE
[5]   On uniqueness of Riemann's examples [J].
Fang, Y ;
Wei, FS .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (05) :1531-1539
[6]   ON MINIMAL ANNULI IN A SLAB [J].
FANG, Y .
COMMENTARII MATHEMATICI HELVETICI, 1994, 69 (03) :417-430
[7]  
HAUSWIRTH L, 2005, MATHDG0511438
[8]   THE 4-VERTEX THEOREM FOR SURFACES OF CONSTANT CURVATURE [J].
JACKSON, SB .
AMERICAN JOURNAL OF MATHEMATICS, 1945, 67 (04) :563-582
[9]  
Lawson H. B, 1980, Mathematics Lecture Series, V9
[10]   THE GLOBAL THEORY OF DOUBLY PERIODIC MINIMAL-SURFACES [J].
MEEKS, WH ;
ROSENBERG, H .
INVENTIONES MATHEMATICAE, 1989, 97 (02) :351-379