Generalized fractional Hermite-Hadamard type inclusions for co-ordinated convex interval-valued functions

被引:2
作者
Vivas-Cortez, Miguel J. J. [3 ]
Kara, Hasan [4 ]
Budak, Huseyin [4 ]
Ali, Muhammad Aamir [1 ]
Chasreechai, Saowaluck [2 ]
机构
[1] Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Peoples R China
[2] King Mongkuts Univ Technol North Bangkok, Fac Appl Sci, Dept Math, Bangkok 10800, Thailand
[3] Pontificia Univ Catolica Ecuador, Escuela Ciencias Matemat & Fis, Fac Ciencias Exactas & Nat, Ave 12 Octubre 1076,Apartado 17-01-2184, Quito, Ecuador
[4] Duzce Univ, Fac Sci & Arts, Dept Math, Duzce, Turkey
来源
OPEN MATHEMATICS | 2022年 / 20卷 / 01期
关键词
H-H inclusion; IVFs; fractional integral; co-ordinated convex; integral inclusions; INEQUALITIES; CALCULUS;
D O I
10.1515/math-2022-0477
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we introduce the notions of generalized fractional integrals for the interval-valued functions (IVFs) of two variables. We establish Hermite-Hadamard (H-H) type inequalities and some related inequalities for co-ordinated convex IVFs by using the newly defined integrals. The fundamental benefit of these inequalities is that these can be turned into classical H-H inequalities and Riemann-Liouville fractional H-H inequalities, and new k k -Riemann-Liouville fractional H-H inequalities can be obtained for co-ordinated convex IVFs without having to prove each one separately.
引用
收藏
页码:1887 / 1903
页数:17
相关论文
共 27 条
  • [1] Azpeitia A.G., 1994, Revista Colombiana de Matematicas, V28, P7
  • [2] Fractional Hermite-Hadamard-type inequalities for interval-valued co-ordinated convex functions
    Budak, Huseyin
    Kara, Hasan
    Ali, Muhammad Aamir
    Khan, Sundas
    Chu, Yuming
    [J]. OPEN MATHEMATICS, 2021, 19 (01): : 1081 - 1097
  • [3] FRACTIONAL HERMITE-HADAMARD-TYPE INEQUALITIES FOR INTERVAL-VALUED FUNCTIONS
    Budak, Huseyin
    Tunc, Tuba
    Sarikaya, Mehmet Zeki
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (02) : 705 - 718
  • [4] Ostrowski type inequalities and applications in numerical integration for interval-valued functions
    Chalco-Cano, Y.
    Lodwick, W. A.
    Condori-Equice, W.
    [J]. SOFT COMPUTING, 2015, 19 (11) : 3293 - 3300
  • [5] Chalco-Cano Y, 2012, COMPUT APPL MATH, V31, P457
  • [6] Several complementary inequalities to inequalities of Hermite-Hadamard type for s-convex functions
    Chen, Feixiang
    Wu, Shanhe
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (02): : 705 - 716
  • [7] Dragomir S.S., 2000, RGMIA MONOGRAPHS
  • [8] Hermite-Hadamard-type inequalities for interval-valued coordinated convex functions involving generalized fractional integrals
    Kara, Hasan
    Ali, Muhammad Aamir
    Budak, Huseyin
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (01) : 104 - 123
  • [9] Hermite-Hadamard Inequalities in Fractional Calculus for Left and Right Harmonically Convex Functions via Interval-Valued Settings
    Khan, Muhammad Bilal
    Macias-Diaz, Jorge E.
    Treanta, Savin
    Soliman, Mohammed S.
    Zaini, Hatim Ghazi
    [J]. FRACTAL AND FRACTIONAL, 2022, 6 (04)
  • [10] Some integral inequalities in interval fractional calculus for left and right coordinated interval-valued functions
    Khan, Muhammad Bilal
    Zaini, Hatim Ghazi
    Macias-Diaz, Jorge E.
    Treanta, Savin
    Soliman, Mohamed S.
    [J]. AIMS MATHEMATICS, 2022, 7 (06): : 10454 - 10482