Realisation of large-scale Photonic Spiking hardware system

被引:0
作者
Talukder, Ria [1 ]
Porte, Xavier [1 ]
Brunner, Daniel [1 ]
机构
[1] Univ Bourgogne Franche Comte, UMR CNRS 6174, FEMTO ST Opt Dept, 15B Ave Mountboucons, F-25030 Besancon, France
来源
EMERGING TOPICS IN ARTIFICIAL INTELLIGENCE (ETAI) 2022 | 2022年 / 12204卷
关键词
spiking neural network; artificial neural network; liquid-state machine; reservoir computer; NETWORKS;
D O I
10.1117/12.2633530
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An efficient photonic hardware integration of neural networks can benefit us from the inherent properties of parallelism, high-speed data processing and potentially low energy consumption. In artificial neural networks (ANN), neurons are classified as static, single and continuous-valued. On contrary, information transmission and computation in biological neurons occur through spikes, where spike time and rate play a significant role. Spiking neural networks (SNNs) are thereby more biologically relevant along with additional benefits in terms of hardware friendliness and energy-efficiency. Considering all these advantages, we designed a photonic reservoir computer (RC) based on photonic recurrent spiking neural networks (SNN) i.e. a liquid state machine. It is a scalable proof-of-concept experiment, comprising more than 30,000 neurons. This system presents an excellent testbed for demonstrating next generation bio-inspired learning in photonic systems.
引用
收藏
页数:4
相关论文
共 50 条
[41]   A Scalable Approach for Consensus Stability Analysis of a Large-Scale Multiagent System With Single Delay [J].
Gomez, Marco A. ;
Ramirez, Adrian .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (07) :4375-4382
[42]   Coupling analysis of passenger and train flows for a large-scale urban rail transit system [J].
Zhang, Ping ;
Yang, Xin ;
Wu, Jianjun ;
Sun, Huijun ;
Wei, Yun ;
Gao, Ziyou .
FRONTIERS OF ENGINEERING MANAGEMENT, 2023, 10 (02) :250-261
[43]   Silicon synaptic transistor for hardware-based spiking neural network and neuromorphic system [J].
Kim, Hyungjin ;
Hwang, Sungmin ;
Park, Jungjin ;
Park, Byung-Gook .
NANOTECHNOLOGY, 2017, 28 (40)
[44]   Robust regression for large-scale neuroimaging studies [J].
Fritsch, Virgile ;
Da Mota, Benoit ;
Loth, Eva ;
Varoquauxa, Gael ;
Banaschewski, Tobias ;
Barker, Gareth J. ;
Bokde, Arun L. W. ;
Bruehl, Ruediger ;
Butzek, Brigitte ;
Conrod, Patricia ;
Flor, Herta ;
Garavan, Hugh ;
Lemaitre, Herve ;
Mann, Karl ;
Nees, Frauke ;
Paus, Tomas ;
Schad, Daniel J. ;
Schuemann, Gunter ;
Frouin, Vincent ;
Poline, Jean-Baptiste ;
Thirion, Bertrand .
NEUROIMAGE, 2015, 111 :431-441
[45]   SOCIAL DYNAMICS IN A LARGE-SCALE ONLINE GAME [J].
Szell, Michael ;
Thurner, Stefan .
ADVANCES IN COMPLEX SYSTEMS, 2012, 15 (06)
[46]   Structure and Function of Large-Scale Brain Systems [J].
Koziol, Leonard F. ;
Barker, Lauren A. ;
Joyce, Arthur W. ;
Hrin, Skip .
APPLIED NEUROPSYCHOLOGY-CHILD, 2014, 3 (04) :236-244
[47]   Large-scale analysis of structural branching measures [J].
Schutte, Michael ;
Dehmer, Matthias .
JOURNAL OF MATHEMATICAL CHEMISTRY, 2014, 52 (03) :805-819
[48]   FLEXIBLE LARGE-SCALE FMRI ANALYSIS: A SURVEY [J].
Kim, Seung-Jun ;
Calhoun, Vince D. ;
Adali, Tulay .
2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, :6319-6323
[49]   Reconstructing a Large-Scale Population for Social Simulation [J].
Fan, Zongchen ;
Meng, Rongqing ;
Ge, Yuanzheng ;
Qiu, Xiaogang .
PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON MECHANICAL ENGINEERING AND CONTROL SYSTEMS (MECS2015), 2016, :308-311
[50]   Probabilistic Cuing in Large-Scale Environmental Search [J].
Smith, Alastair D. ;
Hood, Bruce M. ;
Gilchrist, Iain D. .
JOURNAL OF EXPERIMENTAL PSYCHOLOGY-LEARNING MEMORY AND COGNITION, 2010, 36 (03) :605-618