Sulfur doped Li1.3Al0.3Ti1.7(PO4)3solid electrolytes with enhanced ionic conductivity and a reduced activation energy barrier

被引:41
作者
Kizilaslan, Abdulkadir [1 ,2 ]
Kirkbinar, Mine [1 ]
Cetinkaya, Tugrul [1 ,2 ,3 ]
Akbulut, Hatem [1 ,2 ,3 ]
机构
[1] Sakarya Univ, Met & Mat Engn Dept, Engn Fac, TR-54187 Sakarya, Turkey
[2] Sakarya Univ, Res Dev & Applicat Ctr SARGEM, TR-54187 Sakarya, Turkey
[3] Sakarya Univ, NESSTEC Energy & Surface Technol AS, TR-54050 Sakarya, Turkey
关键词
SOLID-ELECTROLYTE; LITHIUM; GLASS; CRYSTAL; PERFORMANCE; ANODE; RAMAN; LI2S;
D O I
10.1039/d0cp03442h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Recently, tailored synthesis of solid electrolytes satisfy multiple challenges, i.e. high ionic conductivity and wide (electro)chemical stability window is of great interest. Although both oxide- and sulfide-based solid electrolytes have distinguished merits for meeting such concerns separately, a new solid electrolyte having the excellent aspects of both materials is pursued. Herein, we report the synthesis of a sulfur-doped Li1.3Al0.3Ti1.7(PO4)(3)(LATP) solid electrolyte with a NASICON crystal structure that combines elevated ionic conductivity with intrinsic stability against an ambient atmosphere. Sulfur doping was carried out using sulfur-amine chemistry and the system was characterized by XRD, Raman, XPS, ICP-OES, and EDS analyses. Bader charge analysis was carried out with the aid of density functional theory calculations to characterize charge accumulation in the local environment of the bare and sulfur doped LATP structures. Our results indicate that the partial replacement of oxygen with sulfur yields higher ionic conductivity due to the lower electronegativity of sulfur compared to oxygen, which reduces the attraction of lithium ions. The enhanced ionic conductivity of LATP is attributed to a decreased lithium ion diffusion activation energy barrier upon sulfur doping. Compared to bare LATP, the as-prepared sulfur doped LATP powders were shown to decrease the activation energy barrier by 10.1%. Moreover, an ionic conductivity of 5.21 x 10(-4)S cm(-1)was obtained for the sulfur doped LATP powders, whereas bare LATP had an ionic conductivity of 1.02 x 10(-4)S cm(-1)at 40 degrees C.
引用
收藏
页码:17221 / 17228
页数:8
相关论文
共 50 条
  • [41] Combined quantitative microscopy on the microstructure and phase evolution in Li1.3Al0.3Ti1.7(PO4)3 ceramics
    Gunduz, Deniz Cihan
    Schierholz, Roland
    Yu, Shicheng
    Tempel, Hermann
    Kungl, Hans
    Eichel, Ruediger-A.
    JOURNAL OF ADVANCED CERAMICS, 2020, 9 (02) : 149 - 161
  • [42] The influence of phosphorous source on the properties of NASICON lithiumion conductor Li1.3Al0.3Ti1.7(PO4)3
    Lu, Xiaojuan
    Wang, Rui
    Zhang, Feng
    Li, Jing
    SOLID STATE IONICS, 2020, 354
  • [43] An ion-selective Li1.3Al0.3Ti1.7(PO4)3 membrane for electrolytic lithium extraction from brine
    Zhou, Tong
    Zhang, Nan
    Li, Qi
    Li, Guoyao
    Sun, Haidong
    Zhang, Chenglan
    Li, Juan
    Liu, Hezhou
    Duan, Huanan
    DESALINATION, 2025, 610
  • [44] Application of dry high-energy ball-milling to increase the density and grain boundary conductivity of solid ceramic electrolytes: Li1.3Al0.3Ti1.7(PO4)3 as a case study
    Shindrov, Alexander A.
    Skachilova, Maria G.
    Shapovalova, Alexandra A.
    Kosova, Nina V.
    IONICS, 2025, 31 (02) : 1351 - 1360
  • [45] Influence of the annealing technique on the properties of Li ion-conductive Li1.3Al0.3Ti1.7(PO4)3 films
    Xian Ming Wu
    Shang Chen
    Fa Ren Mai
    Jun Hai Zhao
    Ze Qiang He
    Ionics, 2013, 19 : 589 - 593
  • [46] All-solid-state electric double layer supercapacitors using Li1.3Al0.3Ti1.7(PO4)3 reinforced solid polymer electrolyte
    Sharma, Shrishti
    Singh, M. Dinachandra
    Dalvi, Anshuman
    JOURNAL OF ENERGY STORAGE, 2022, 49
  • [47] Effect of lithium-free flux B2O3 on the ion conductivity of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte
    Shi Mao-Lei
    Liu Lei
    Tian Fang-Hui
    Wang Peng-Fei
    Li Jia-Jun
    Ma Lei
    ACTA PHYSICA SINICA, 2017, 66 (20)
  • [48] Surface modification of Li3PO4 to Li1.3Al0.3Ti1.7(PO4)3 by wet chemical process and its sintering behavior
    Ishii, Kento
    Taniguchi, Yuri
    Miura, Akira
    Miyoshi, Shogo
    Takada, Kazunori
    Kawamura, Go
    Muto, Hiroyuki
    Matsuda, Atsunori
    Fuji, Masayoshi
    Uchikoshi, Tetsuo
    JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, 2024, 132 (06) : 257 - 266
  • [49] Next-generation Li1.3+xAl0.3AsxTi1.7-x(PO4)3 NASICON electrolytes with outstanding ionic conductivity performance
    Taoussi, S.
    Ouaha, A.
    Naji, M.
    Hoummada, K.
    Lahmar, A.
    Alami, J.
    Manoun, B.
    El Bouari, A.
    Frielinghaus, H.
    Bih, L.
    JOURNAL OF POWER SOURCES, 2025, 644
  • [50] Preparation of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte via a sol-gel method using various Ti sources
    Kotobuki, Masashi
    Koishi, Masaki
    JOURNAL OF ASIAN CERAMIC SOCIETIES, 2020, 8 (03): : 891 - 897