Asymptotic behavior to a chemotaxis consumption system with singular sensitivity

被引:12
作者
Zhao, Xiangdong [1 ]
Zheng, Sining [1 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
asymptotic stability; boundedness; chemotaxis; singular sensitivity; KELLER-SEGEL SYSTEM; GLOBAL EXISTENCE; BOUNDEDNESS; MODEL;
D O I
10.1002/mma.4762
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a chemotaxis consumption system with singular sensitivity ut=u-delta(delta v), v(t)=epsilon v-uv in a bounded domain Rn with ,,epsilon>0. The global existence of classical solutions is obtained with n=1. Moreover, for any global classical solution (u,v) to the case of n,1, it is shown that v converges to 0 in the L-norm as t with the decay rate established whenever epsilon(epsilon(0),1) with epsilon 0=max{0,1- X/alpha parallel to v(0)parallel to(alpha-1)(L infinity}(Omega)).
引用
收藏
页码:2615 / 2624
页数:10
相关论文
共 32 条