Number of vertices of degree three in spanning 3-trees in square graphs

被引:0
作者
Aye, Win Min [1 ]
Tian, Tao [2 ]
Xiong, Liming [2 ]
机构
[1] Ka Lay Univ, Math Dept, Kalay, Myanmar
[2] Beijing Inst Technol, Sch Math & Stat, Beijing Key Lab MCAACI, Beijing 10248, Peoples R China
关键词
Square graph; 3-tree; Spanning tree; MAXIMUM DEGREE; TREES;
D O I
10.1016/j.amc.2019.03.062
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we show that the square graph of a tree T has a spanning tree of maximum degree at most three and with at most max {0, Sigma(x is an element of W >= 3) ((T)) (t(T) (x)-2)-2} vertices of degree three, where W->= 3 (T) = {x is an element of V (T) : there are at least three edge-disjoint paths of length at least two that start x} and t(T)(x) is the number of edge-disjoint paths with length at least two that start at a vertex x. (c) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:258 / 262
页数:5
相关论文
共 12 条
[1]   Maximal trees with bounded maximum degree in a graph [J].
Aung, M ;
Kyaw, A .
GRAPHS AND COMBINATORICS, 1998, 14 (03) :209-221
[2]  
Bondy J.A., 2008, GRADUATE MATH, V244
[3]  
Broersma H, 1998, J GRAPH THEOR, V29, P227, DOI 10.1002/(SICI)1097-0118(199812)29:4<227::AID-JGT2>3.3.CO
[4]  
2-N
[5]   ON THE LARGEST TREE OF GIVEN MAXIMUM DEGREE IN A CONNECTED GRAPH [J].
CARO, Y ;
KRASIKOV, I ;
RODITTY, Y .
JOURNAL OF GRAPH THEORY, 1991, 15 (01) :7-13
[6]  
Fleischner H., 1974, Journal of Combinatorial Theory, Series B, V16, P29, DOI 10.1016/0095-8956(74)90091-4
[7]  
NEUMANNLARA V, 1991, COMBINATORICA, V11, P55, DOI 10.1007/BF01375473
[8]  
Ore O., 1960, Am Math Monthly, V67, P55, DOI [10.2307/2308928, DOI 10.2307/2308928]
[9]   A note on a spanning 3-tree [J].
Tsugaki, Masao .
COMBINATORICA, 2009, 29 (01) :127-129
[10]  
Win S., 1979, RESULTATE MATH, V2, P215