Variable selection in the high-dimensional continuous generalized linear model with current status data

被引:19
|
作者
Tian, Guo-Liang [1 ]
Wang, Mingqiu [2 ,3 ]
Song, Lixin [2 ]
机构
[1] Univ Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Hong Kong, Peoples R China
[2] Dalian Univ Technol, Sch Math Sci, Dalian 116023, Liaoning, Peoples R China
[3] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Shandong, Peoples R China
关键词
current status data; generalized linear model; oracle property; SCAD penalty; variable selection; NONCONCAVE PENALIZED LIKELIHOOD; DIVERGING NUMBER; REGRESSION-MODELS; BRIDGE ESTIMATORS; ORACLE PROPERTIES; CURE MODEL; LASSO; PARAMETERS; SHRINKAGE;
D O I
10.1080/02664763.2013.840271
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In survival studies, current status data are frequently encountered when some individuals in a study are not successively observed. This paper considers the problem of simultaneous variable selection and parameter estimation in the high-dimensional continuous generalized linear model with current status data. We apply the penalized likelihood procedure with the smoothly clipped absolute deviation penalty to select significant variables and estimate the corresponding regression coefficients. With a proper choice of tuning parameters, the resulting estimator is shown to be a root n/p(n)-consistent estimator under some mild conditions. In addition, we show that the resulting estimator has the same asymptotic distribution as the estimator obtained when the true model is known. The finite sample behavior of the proposed estimator is evaluated through simulation studies and a real example.
引用
收藏
页码:467 / 483
页数:17
相关论文
共 50 条
  • [21] Bayesian variable selection in multinomial probit model for classifying high-dimensional data
    Aijun Yang
    Yunxian Li
    Niansheng Tang
    Jinguan Lin
    Computational Statistics, 2015, 30 : 399 - 418
  • [22] Bayesian variable selection in multinomial probit model for classifying high-dimensional data
    Yang, Aijun
    Li, Yunxian
    Tang, Niansheng
    Lin, Jinguan
    COMPUTATIONAL STATISTICS, 2015, 30 (02) : 399 - 418
  • [23] Variable selection in high-dimensional partly linear additive models
    Lian, Heng
    JOURNAL OF NONPARAMETRIC STATISTICS, 2012, 24 (04) : 825 - 839
  • [24] Estimating the effect of a variable in a high-dimensional linear model
    Jensen, Peter S.
    Wurtz, Allan H.
    ECONOMETRICS JOURNAL, 2012, 15 (02): : 325 - 357
  • [25] Homogeneity detection for the high-dimensional generalized linear model
    Jeon, Jong-June
    Kwon, Sunghoon
    Choi, Hosik
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 114 : 61 - 74
  • [26] VARIABLE SELECTION FOR HIGH-DIMENSIONAL GENERALIZED VARYING-COEFFICIENT MODELS
    Lian, Heng
    STATISTICA SINICA, 2012, 22 (04) : 1563 - 1588
  • [27] Bayesian adaptive lasso with variational Bayes for variable selection in high-dimensional generalized linear mixed models
    Dao Thanh Tung
    Minh-Ngoc Tran
    Tran Manh Cuong
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2019, 48 (02) : 530 - 543
  • [28] A Model Selection Criterion for High-Dimensional Linear Regression
    Owrang, Arash
    Jansson, Magnus
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (13) : 3436 - 3446
  • [29] Bayesian Variable Selection in Clustering High-Dimensional Data With Substructure
    Swartz, Michael D.
    Mo, Qianxing
    Murphy, Mary E.
    Lupton, Joanne R.
    Turner, Nancy D.
    Hong, Mee Young
    Vannucci, Marina
    JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2008, 13 (04) : 407 - 423
  • [30] Stochastic variational variable selection for high-dimensional microbiome data
    Dang, Tung
    Kumaishi, Kie
    Usui, Erika
    Kobori, Shungo
    Sato, Takumi
    Toda, Yusuke
    Yamasaki, Yuji
    Tsujimoto, Hisashi
    Ichihashi, Yasunori
    Iwata, Hiroyoshi
    MICROBIOME, 2022, 10 (01)