A Protein Rotaxane Controls the Trans location of Proteins Across a ClyA Nanopore

被引:55
作者
Biesemans, Annemie [2 ]
Soskine, Misha [1 ]
Maglia, Giovanni [1 ,2 ]
机构
[1] Univ Groningen, Groningen Biomol Sci & Biotechnol Inst, NL-9747 AG Groningen, Netherlands
[2] Univ Louvain, Dept Chem, B-3001 Louvain, Belgium
基金
欧洲研究理事会;
关键词
ClyA nanopore; protein translocation; rotaxane; voltage-dependent residence time; DHFR; DOUBLE-STRANDED DNA; TOXIN LETHAL FACTOR; ALPHA-HEMOLYSIN NANOPORE; SOLID-STATE NANOPORES; BIOLOGICAL NANOPORE; TRANSMEMBRANE PORE; DIPHTHERIA-TOXIN; MAMMALIAN-CELLS; TRANSLOCATION; MOLECULE;
D O I
10.1021/acs.nanolett.5b02309
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Rotaxanes, pseudorotaxanes, and catenanes are supramolecular complexes with potential use in nanomachinery, molecular computing, and single-molecule studies. Here we constructed a protein rotaxane in which a polypeptide thread is encircled by a Cytolysin A (ClyA) nanopore and capped by two protein stoppers. The rotaxane could be switched between two states. At low negative applied potentials (<-50 mV) one of the protein stoppers resided inside the nanopore indefinitely. Under this configuration the rotaxane prevents the diffusion of protein molecules across the lipid bilayer and provides a useful platform for single-molecule analysis. High negative applied potentials (-100 mV) dismantled the interlocked rotaxane system by the forceful translocation of the protein stopper, allowing new proteins to be trapped inside or transported across the nanopore. The observed voltage threshold for the translocation of the protein stopper through the nanopore related well to the biphasic voltage dependence of the residence time measured for the freely diffusing protein stopper. We propose a model in which molecules translocate through a nanopore when the average dwell time decreases with the applied potential.
引用
收藏
页码:6076 / 6081
页数:6
相关论文
共 46 条
  • [1] Ackermann D, 2010, NAT NANOTECHNOL, V5, P436, DOI [10.1038/nnano.2010.65, 10.1038/NNANO.2010.65]
  • [2] Self-assembly of a nanoscale DNA box with a controllable lid
    Andersen, Ebbe S.
    Dong, Mingdong
    Nielsen, Morten M.
    Jahn, Kasper
    Subramani, Ramesh
    Mamdouh, Wael
    Golas, Monika M.
    Sander, Bjoern
    Stark, Holger
    Oliveira, Cristiano L. P.
    Pedersen, Jan Skov
    Birkedal, Victoria
    Besenbacher, Flemming
    Gothelf, Kurt V.
    Kjems, Jorgen
    [J]. NATURE, 2009, 459 (7243) : 73 - U75
  • [3] FUSIONS OF ANTHRAX TOXIN LETHAL FACTOR WITH SHIGA TOXIN AND DIPHTHERIA-TOXIN ENZYMATIC DOMAINS ARE TOXIC TO MAMMALIAN-CELLS
    ARORA, N
    LEPPLA, SH
    [J]. INFECTION AND IMMUNITY, 1994, 62 (11) : 4955 - 4961
  • [4] ARORA N, 1992, J BIOL CHEM, V267, P15542
  • [5] ARORA N, 1994, J BIOL CHEM, V269, P26165
  • [6] Recognizing a single base in an individual DNA strand:: A step toward DNA sequencing in nanopores
    Ashkenasy, N
    Sánchez-Quesada, J
    Bayley, H
    Ghadiri, MR
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2005, 44 (09) : 1401 - 1404
  • [7] DNA Origami Nanopores
    Bell, Nicholas A. W.
    Engst, Christian. R.
    Ablay, Marc
    Divitini, Giorgio
    Ducati, Caterina
    Liedl, Tim
    Keyser, Ulrich F.
    [J]. NANO LETTERS, 2012, 12 (01) : 512 - 517
  • [8] Sequence-specific detection of individual DNA polymerase complexes in real time using a nanopore
    Benner, Seico
    Chen, Roger J. A.
    Wilson, Noah A.
    Abu-Shumays, Robin
    Hurt, Nicholas
    Lieberman, Kate R.
    Deamer, David W.
    Dunbar, William B.
    Akeson, Mark
    [J]. NATURE NANOTECHNOLOGY, 2007, 2 (11) : 718 - 724
  • [9] Threading a peptide through a peptide: Protein loops, rotaxanes, and knots
    Blankenship, John W.
    Dawson, Philip E.
    [J]. PROTEIN SCIENCE, 2007, 16 (07) : 1249 - 1256
  • [10] Self-Assembled DNA Nanopores That Span Lipid Bilayers
    Burns, Jonathan R.
    Stulz, Eugen
    Howorka, Stefan
    [J]. NANO LETTERS, 2013, 13 (06) : 2351 - 2356