Bivariant cyclic cohomology and Connes' bilinear pairings in noncommutative motives

被引:0
作者
Tabuada, Goncalo [1 ,2 ,3 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
[2] UNL, FCT, Dept Matemat, Quinta Da Tone, Caparica, Portugal
[3] UNL, FCT, CMA, P-2829516 Quinta Da Tone, Caparica, Portugal
基金
美国国家科学基金会;
关键词
Noncommutative algebraic geometry; bivariant cyclic cohomology; Connes' bilinear pairings; noncommutative motives; TOPOLOGICAL HOCHSCHILD HOMOLOGY; K-THEORY; UNIVERSAL INVARIANTS; SYMMETRIC SPECTRA; MODEL CATEGORIES; DG-CATEGORIES; LOCALIZATION; MAPS;
D O I
10.4171/JNCG/193
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we further the study of noncommutative motives. We prove that the bivariant cohomology and the bivariant Chern character of any additive invariant E become representable in the category of noncommutative motives. This applies in particular to bivariant cyclic cohomology and its variants. When E is moreover symmetric monoidal we prove that the associated Chern character is multiplicative and characterize it by a precise universal property. In the particular case of bivariant cyclic cohomology the associated Chem character becomes the universal lift of the Dennis trace map. Then, we prove that under the above representability result, the composition operation in the category of noncommutative motives identifies with Connes' bilinear pairings. As an application, we obtain a simple model, given by Karoubi's infinite matrices, for the (de)suspension of these bivariant cohomology theories.
引用
收藏
页码:265 / 285
页数:21
相关论文
共 42 条
  • [1] Adamek Jiri, 1994, London Mathematical Society Lecture Note Series, V189
  • [2] [Anonymous], 1970, Lecture Notes in Mathematics
  • [3] [Anonymous], 2009, HIGHER TOPOS THEORY, DOI DOI 10.1515/9781400830558
  • [4] [Anonymous], 1967, LECT NOTES MATH
  • [5] Bhatia Rajendra, 2011, P INT C MATH HIND BO, VII, P461
  • [6] Localization theorems in topological Hochschild homology and topological cyclic homology
    Blumberg, Andrew J.
    Mandell, Michael A.
    [J]. GEOMETRY & TOPOLOGY, 2012, 16 (02) : 1053 - 1120
  • [7] Bondal A, 2003, MOSC MATH J, V3, P1
  • [8] Bondal A., 1990, Mat. Sb., V181, P669
  • [9] Symmetric monoidal structure on non-commutative motives
    Cisinski, Denis-Charles
    Tabuada, Goncalo
    [J]. JOURNAL OF K-THEORY, 2012, 9 (02) : 201 - 268
  • [10] Non-connective K-theory via universal invariants
    Cisinski, Denis-Charles
    Tabuada, Goncalo
    [J]. COMPOSITIO MATHEMATICA, 2011, 147 (04) : 1281 - 1320