GaN-Based Nanorods/Graphene Heterostructures for Optoelectronic Applications

被引:5
|
作者
Sarau, George [1 ,2 ]
Heilmann, Martin [2 ]
Latzel, Michael [2 ,3 ]
Tessarek, Christian [1 ,2 ]
Christiansen, Silke [1 ,2 ,4 ]
机构
[1] Helmholtz Zentrum Berlin Mat & Energie, Hahn Meitner Pl 1, D-14109 Berlin, Germany
[2] Max Planck Inst Sci Light, Staudtstr 2, D-91058 Erlangen, Germany
[3] Friedrich Alexander Univ Erlangen Nurnberg FAU, Inst Opt Informat & Photon, Staudtstr 7-B2, D-91058 Erlangen, Germany
[4] Free Univ Berlin, Phys Dept, Arnimallee 14, D-14195 Berlin, Germany
来源
关键词
defects; GaN; graphene; heterostructures; nanorods; nucleation; silicon; DER-WAALS EPITAXY; GROWTH; GRAPHENE; NANOWIRES; SI; NITRIDATION; NUCLEATION; TRANSPORT; NANORODS; ARRAYS;
D O I
10.1002/pssb.201800454
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The insulating character of sapphire, meltback etching of Si, bulk and surface defects prevented the efficient integration of GaN nanostructures in optoelectronic devices. Here, it is demonstrated that graphene can simultaneously serve as an electrical bottom contact, a chemically inert buffer layer, and a superior lattice and thermal matched growth substrate. Vertically aligned, high crystal quality GaN nanorods (NRs) without bulk defects such as threading dislocations and with only a mild strain at the NRs' base are grown by metal-organic vapor-phase epitaxy on defect-free graphene using nanometer-sized AlxGa1-xN nucleation islands. Here no influence of the supporting substrate on the GaN epitaxy is observed. However, at defects in graphene the effects of dangling bonds and the underlying substrate, presumably through nanoholes in graphene, on the properties of GaN NRs are visible. It is also shown that surface defects in InxGa1-xN/GaN NRs from planar films produced by etching of the defective material can be effectively passivated with only 10 nm alumina deposited by atomic layer deposition. This is confirmed by the increase in electroluminescence measured on finished devices with graphene top contact. These results can potentially lead to new material combinations including graphene, GaN, and other relevant semiconductors like Si toward yet unexplored device concepts.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Ultrafast miniaturized GaN-based optoelectronic proximity sensor
    XIAOSHUAI AN
    HONGYING YANG
    YUMENG LUO
    ZHIQIN CHU
    KWAI HEI LI
    Photonics Research, 2022, 10 (08) : 1964 - 1970
  • [22] Tunnel radiation in the luminescence spectra of GaN-based heterostructures
    Yunovich, AE
    Kudryashov, VE
    Turkin, AN
    Leroux, M
    Dalmasso, S
    GAN AND RELATED ALLOYS-2002, 2003, 743 : 647 - 652
  • [23] Stress Analysis of GaN-Based Heterostructures on Silicon Substrates
    Arteev, D. S.
    Sakharov, A. V.
    Zavarin, E. E.
    Nikolaev, A. E.
    Yagovkina, M. A.
    Tsatsulnikov, A. F.
    SEMICONDUCTORS, 2024, 58 (02) : 99 - 102
  • [24] Demonstration of Rashba spin splitting in GaN-based heterostructures
    Weber, W
    Ganichev, SD
    Danilov, SN
    Weiss, D
    Prettl, W
    Kvon, ZD
    Bel'kov, VV
    Golub, LE
    Cho, HI
    Lee, JH
    APPLIED PHYSICS LETTERS, 2005, 87 (26) : 1 - 3
  • [25] Wurtzite GaN-based heterostructures by molecular beam epitaxy
    Morkoc, H
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 1998, 4 (03) : 537 - 549
  • [26] Demonstration of Rashba spin splitting in GaN-based heterostructures
    Weber, W.
    Ganichev, S. D.
    Seidl, S.
    Bel'kov, V. V.
    Golub, L. E.
    Prettl, W.
    Kvon, Z. D.
    Cho, Hyun-Ick
    Lee, Hing-Hee
    PHYSICS OF SEMICONDUCTORS, PTS A AND B, 2007, 893 : 1311 - +
  • [27] GaN-based amplifiers for wideband applications
    Schuh, Patrick
    Sledzik, Hardy
    Reber, Rolf
    Widmer, Kristina
    Oppermann, Martin
    Muer, Markus
    Seelmann-Eggebert, Matthias
    Kiefer, Rudolf
    INTERNATIONAL JOURNAL OF MICROWAVE AND WIRELESS TECHNOLOGIES, 2010, 2 (01) : 135 - 141
  • [28] Graphene GaN-Based Schottky Ultraviolet Detectors
    Xu, Kun
    Xu, Chen
    Xie, Yiyang
    Deng, Jun
    Zhu, Yanxu
    Guo, Weiling
    Xun, Meng
    Teo, Kenneth B. K.
    Chen, Hongda
    Sun, Jie
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2015, 62 (09) : 2802 - 2808
  • [29] AlGaN/GaN-Based Optoelectronic Synaptic Devices for Neuromorphic Computing
    Kai, Cuihong
    Wang, Yue
    Liu, Xiaoping
    Liu, Xiao
    Zhang, Xuqing
    Pi, Xiaodong
    Yang, Deren
    ADVANCED OPTICAL MATERIALS, 2023, 11 (07)
  • [30] Growth of embedded photonic crystals for GaN-based optoelectronic devices
    Matioli, Elison
    Keller, Stacia
    Wu, Feng
    Choi, Yong-Seok
    Hu, Evelyn
    Speck, James
    Weisbuch, Claude
    Journal of Applied Physics, 2009, 106 (02):