Utilization of H2O and CO2 in Coal Particle Gasification with an Impact of Temperature and Particle Size

被引:7
|
作者
Sutardi, Tata [1 ,2 ]
Wang, Linwei [3 ]
Karimi, Nader [4 ]
Paul, Manosh C. [1 ]
机构
[1] Univ Glasgow, Syst Power & Energy Res Div, James Watt Sch Engn, Glasgow G12 8QQ, Lanark, Scotland
[2] Agcy Assessment & Applicat Technol BPPT, Jakarta 10340, Indonesia
[3] Loughborough Univ, Ctr Renewable Energy Syst Technol CREST, Wolfson Sch Mech Elect & Mfg Engn, Loughborough LE11 3TU, Leics, England
[4] Queen Mary Univ London, Sch Engn & Mat Sci, London E1 4NS, England
关键词
SINGLE BIOMASS PARTICLE; NUMERICAL-SIMULATION; COMBUSTION BEHAVIOR; ENTROPY GENERATION; OXY-COMBUSTION; TRANSPORT; KINETICS; RANKS; STEAM; SITU;
D O I
10.1021/acs.energyfuels.0c02280
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Aiming at improving the quality of syngas, the thermochemical behavior of syngas formation during a single coal particle gasification process is investigated based on a validated numerical model. Initially, simulations of coal gasification with steam (H2O) are conducted in a reactor, and the results show that the steam gasification generally favors the production of H-2 and CH4. However, the switch of agent to CO2 into the gasifier influences the gasification products having H-2, CO, and CH4. This then prompts the investigation of a mixture of H2O and CO2 agent in the reactor's environment, and the results show a promising indicator in producing an overall better syngas quality. Moreover, the influence of the coal particle size and gasification temperature on the syngas production is studied. The results identify that the concentration of syngas products is higher when using smaller coal particles as the behavior of heterogeneous reactions of CO formation is affected by the particle size. Finally, high temperature promotes the chemical reactions of the gasification process, resulting in the improved production of syngas.
引用
收藏
页码:12841 / 12852
页数:12
相关论文
共 50 条
  • [31] The effects of specific surface area and ash on char gasification mechanisms in the mixture of H2O, CO2, H2 and CO
    Zhang, Rui
    Chen, Yifan
    Lei, Kai
    Liu, Dong
    FUEL, 2017, 209 : 109 - 116
  • [32] Study of the Effect of Coal Type and Particle Size on Char-CO2 Gasification via Gas Analysis
    Kim, Yong Tack
    Seo, Dong Kyun
    Hwang, Jungho
    ENERGY & FUELS, 2011, 25 (11) : 5044 - 5054
  • [33] Competitive or additive behavior for H2O and CO2 gasification of coal char? Exploration via simplistic atomistic simulation
    Du, Yongbo
    Wang, Chang'an
    Xin, Haihui
    Che, Defu
    Mathews, Jonathan P.
    CARBON, 2019, 141 : 226 - 237
  • [34] Theoretical insight into the competitive effect of CO2 and additive H2O in coke gasification
    Liang, Lei
    Sun, Zhang
    Zhang, Hang
    Liu, Hao-Dong
    Wang, Jie-Ping
    Li, Guang-Yue
    Liang, Ying-Hua
    CHEMICAL ENGINEERING JOURNAL, 2023, 461
  • [35] The kinetics of CO2 gasification of coal chars
    Tomaszewicz, Martyna
    Labojko, Grzegorz
    Tomaszewicz, Grzegorz
    Kotyczka-Moranska, Michalina
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2013, 113 (03) : 1327 - 1335
  • [36] Fluidized bed gasification of lignite char with CO2 and H2O: A kinetic study
    Scala, Fabrizio
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2015, 35 : 2839 - 2846
  • [37] Gasification Effect of Metallurgical Coke with CO2 and H2O on the Porosity and Macrostrength in the Temperature Range of 1100 to 1500 °C
    Shin, Soon-Mo
    Jung, Sung-Mo
    ENERGY & FUELS, 2015, 29 (10) : 6849 - 6857
  • [38] Effect of H2O on the combustion characteristics of pulverized coal in O2/CO2 atmosphere
    Yi, Baojun
    Zhang, Liqi
    Huang, Fang
    Mao, Zhihui
    Zheng, Chuguang
    APPLIED ENERGY, 2014, 132 : 349 - 357
  • [39] Precise in-situ infrared spectra and kinetic analysis of gasification under the H2O or CO2 atmospheres
    Zhang, Chenhang
    Wu, Liangkai
    Kang, Running
    Bin, Feng
    Dou, Baojuan
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 52 : 46 - 57
  • [40] The gasification reactivity of high-heating-rate chars in single and mixed atmospheres of H2O and CO2
    Guizani, C.
    Sanz, F. J. Escudero
    Salvador, S.
    FUEL, 2013, 108 : 812 - 823